
Logical Argumentation: A Tutorial
The 6th Summer School on Argumentation, 2024, Hagen

Kees van Berkel1 and Christian Straßer2

1Institute for Logic and Computation, TU Wien, Austria
2Institute for Philosophy II, Ruhr University Bochum, Germany

In a nutshell

Logical argumentation:

▶ modelling defeasibility of reasoning through the interaction of arguments and
counter-arguments,

▶ where arguments are complex premise-conclusion structures generated by a logic.

In fact, logical argumentation is a unifying framework for the representation, comparison, and
study of nonmonotonic logics!

We dive into this in the next 3,5 hours.

2 / 93

In a nutshell

Logical argumentation:

▶ modelling defeasibility of reasoning through the interaction of arguments and
counter-arguments,

▶ where arguments are complex premise-conclusion structures generated by a logic.

In fact, logical argumentation is a unifying framework for the representation, comparison, and
study of nonmonotonic logics!

We dive into this in the next 3,5 hours.

4 / 93

Outline

The outline for today:

1 Defeasible reasoning and NML

2 Formal argumentation

3 Logical argumentation

4 Metatheory, properties, and desiderata

5 Application to normative reasoning

5 / 93

Outline

The outline for today:

1 Defeasible reasoning and NML

2 Formal argumentation

3 Logical argumentation

4 Metatheory, properties, and desiderata

5 Application to normative reasoning

6 / 93

Part 1: Defeasible Reasoning

Part 1: defeasible reasoning

First, reasoning is drawing conclusions from assumptions using inference rules:

▶ Deductive: making inferences that hold without exception.
▶ Defeasible: retain the option to retract an inference.

E.g., upon hearing

I
T HAS BEEN TOLD that princess Charlotte killed the dragon Norbert . . .

what conclusions would we draw?

▶ Charlotte is a skilled fighter (since dragons are large and dangerous).
▶ Charlotte really did kill Norbert.

8 / 93

Part 1: defeasible reasoning

When reasoning defeasibly we jump to conclusions:

▶ Nobody said that Norbert is large and dangerous...

T
HE LOCAL DRAGON PROTECTION GUILD WAS OUTRAGED. Since years they have been lobbying at
the king’s court that baby dragons are not to be admitted to show fights with the royal

offspring.

Upon learning the above, we surely want to retract some inferences!

▶ Norbert was just a baby, Charlotte was not necessarily skilled.

9 / 93

Part 1: defeasible reasoning

When reasoning defeasibly, the given information is uncertain:

▶ Information may turn out to be incorrect or may be disputed.

T
HE ROYAL PROPAGANDISTS PLANTED THE STORY of the princess’ brave killing in all the royal
news outlets, while in reality poor Norbert died of old age.

Upon learning the above, we may also want to retract inferences:

▶ Norbert was not killed at all!

10 / 93

Part 1: defeasible reasoning

Defeasible reasoning is not just a curiosity!

Yes, deductive reasoning is pivotal to mathematics and science.

But if we were only to reason deductively on certain information, we wouldn’t come far on a
daily base.

Most of our everyday reasoning is defeasible:

▶ Based on probability, likelihood, plausibility, common sense, incomplete information, . . .

Nonmonotonic logics (NML):

▶ Formal approach to defeasible reasoning.

11 / 93

Part 1: defeasible reasoning

Defeasible reasoning is not just a curiosity!

Yes, deductive reasoning is pivotal to mathematics and science.

But if we were only to reason deductively on certain information, we wouldn’t come far on a
daily base.

Most of our everyday reasoning is defeasible:

▶ Based on probability, likelihood, plausibility, common sense, incomplete information, . . .

Nonmonotonic logics (NML):

▶ Formal approach to defeasible reasoning.

12 / 93

Part 1: defeasible reasoning

Defeasible reasoning is not just a curiosity!

Yes, deductive reasoning is pivotal to mathematics and science.

But if we were only to reason deductively on certain information, we wouldn’t come far on a
daily base.

Most of our everyday reasoning is defeasible:

▶ Based on probability, likelihood, plausibility, common sense, incomplete information, . . .

Nonmonotonic logics (NML):

▶ Formal approach to defeasible reasoning.

13 / 93

Part 1: monotonic logic

Most logics in traditional logic text books are monotonic:

▶ Classical logic (CL), intuitionistic logic, . . .
▶ Monotonic inferences are absolutely warranted, without exception.

E.g., let ⊢CL be classical entailment:

ϕ ∧ ψ ⊢CL ϕ

θ, ϕ ∧ ψ ⊢CL ϕ

θ → ⊥, θ, ϕ ∧ ψ ⊢CL ϕ

. . .

CL preserves the truth/derivability throughout the inference process:

▶ Conclusions accumulate and are never retracted

14 / 93

Part 1: nonmonotonic logic

For nonmonotonic logics monotonicity does not hold (deliberately!):

e.g., ϕ ⊢ ϕ and ϕ,¬ϕ ̸⊢ ϕ

▶ Great for reasoning with incomplete, uncertain, and inconsistent knowledge bases.

À branch of Artificial Intelligence central to Knowledge Representation and Reasoning:

▶ Default logic (Reiter, 1980);
▶ Autoepistemic logic (Moore, 1985);
▶ KLM approach (Kraus et al, 1990) and (Lehman and Magidor, 1992);
▶ Input/Output logic (Makinson and van der Torre, 2001);

. . .

15 / 93

Part 1: nonmonotonic logic

For nonmonotonic logics monotonicity does not hold (deliberately!):

e.g., ϕ ⊢ ϕ and ϕ,¬ϕ ̸⊢ ϕ

▶ Great for reasoning with incomplete, uncertain, and inconsistent knowledge bases.

À branch of Artificial Intelligence central to Knowledge Representation and Reasoning:

▶ Default logic (Reiter, 1980);
▶ Autoepistemic logic (Moore, 1985);
▶ KLM approach (Kraus et al, 1990) and (Lehman and Magidor, 1992);
▶ Input/Output logic (Makinson and van der Torre, 2001);

. . .

16 / 93

Part 1: nonmonotonic logic

Ah, but!

The investigation of defeasible reasoning goes much further back:

▶ Aristotle (384 – 322 BCE) distinguished deductive from dialectic (defeasible) reasoning.
▶ Ross (1930) argued that moral reasoning is defeasible. Duties are prima facie: ‘You should not

lie’ is by default, not absolute.
▶ Hart (1948) introduced the term ‘defeasibility’ in the context of legal contracts.
▶ Toulmin (1958) explicitly attacked formal logic (CL at the time) for its inability to reason

defeasibly!

17 / 93

Part 1: nonmonotonic logic

Ah, but!

The investigation of defeasible reasoning goes much further back:

▶ Aristotle (384 – 322 BCE) distinguished deductive from dialectic (defeasible) reasoning.
▶ Ross (1930) argued that moral reasoning is defeasible. Duties are prima facie: ‘You should not

lie’ is by default, not absolute.
▶ Hart (1948) introduced the term ‘defeasibility’ in the context of legal contracts.
▶ Toulmin (1958) explicitly attacked formal logic (CL at the time) for its inability to reason

defeasibly!

18 / 93

Part 1: Toulmin and argumentation

Toulmin proposed the following argument scheme:

ConclusionPremise(s)

Arguments obtain their validity through a warrant.

Defeasibility through ”defeating” counter-arguments.

a Albert was just a baby!

b Albert was sleeping and Charlotte got help. . .

c Journalists discovered the killing was a propagated fake story.

19 / 93

Part 1: Toulmin and argumentation

Toulmin proposed the following argument scheme:

ConclusionPremise(s)

Warrant

Arguments obtain their validity through a warrant.

Defeasibility through ”defeating” counter-arguments.

a Albert was just a baby!

b Albert was sleeping and Charlotte got help. . .

c Journalists discovered the killing was a propagated fake story.

20 / 93

Part 1: Toulmin and argumentation

Toulmin proposed the following argument scheme:

ConclusionPremise(s)

Warrant

Backing

Arguments obtain their validity through a warrant.

Defeasibility through ”defeating” counter-arguments.

a Albert was just a baby!

b Albert was sleeping and Charlotte got help. . .

c Journalists discovered the killing was a propagated fake story.

21 / 93

Part 1: Toulmin and argumentation

Toulmin proposed the following argument scheme:

ConclusionPremise(s)

Warrant

DefeatBacking

Arguments obtain their validity through a warrant.

Defeasibility through ”defeating” counter-arguments.

a Albert was just a baby!

b Albert was sleeping and Charlotte got help. . .

c Journalists discovered the killing was a propagated fake story.

22 / 93

Part 1: Toulmin and argumentation

Toulmin proposed the following argument scheme:

Charlotte is a
skilled fighter.

Charlotte killed
Albert the dragon

Arguments obtain their validity through a warrant.

Defeasibility through ”defeating” counter-arguments.

a Albert was just a baby!

b Albert was sleeping and Charlotte got help. . .

c Journalists discovered the killing was a propagated fake story.

23 / 93

Part 1: Toulmin and argumentation

Toulmin proposed the following argument scheme:

Charlotte is a
skilled fighter.

Charlotte killed
Albert the dragon

Dragons are large
and dangerous

(killing them
requires skill)

History has told
us….

Arguments obtain their validity through a warrant.

Defeasibility through ”defeating” counter-arguments.

a Albert was just a baby!

b Albert was sleeping and Charlotte got help. . .

c Journalists discovered the killing was a propagated fake story.

24 / 93

Part 1: Toulmin and argumentation

Toulmin proposed the following argument scheme:

Charlotte is a
skilled fighter.

Charlotte killed
Albert the dragon

Dragons are large
and dangerous

(killing them
requires skill) aHistory has told

us….

Arguments obtain their validity through a warrant.

Defeasibility through ”defeating” counter-arguments.

a Albert was just a baby!

b Albert was sleeping and Charlotte got help. . .

c Journalists discovered the killing was a propagated fake story.

25 / 93

Part 1: Toulmin and argumentation

Toulmin proposed the following argument scheme:

Charlotte is a
skilled fighter.

Charlotte killed
Albert the dragon

Dragons are large
and dangerous

(killing them
requires skill) bHistory has told

us….

Arguments obtain their validity through a warrant.

Defeasibility through ”defeating” counter-arguments.

a Albert was just a baby!

b Albert was sleeping and Charlotte got help. . .

c Journalists discovered the killing was a propagated fake story.

26 / 93

Part 1: Toulmin and argumentation

Toulmin proposed the following argument scheme:

Charlotte is a
skilled fighter.

Charlotte killed
Albert the dragon

Dragons are large
and dangerous

(killing them
requires skill) cHistory has told

us….

Arguments obtain their validity through a warrant.

Defeasibility through ”defeating” counter-arguments.

a Albert was just a baby!

b Albert was sleeping and Charlotte got help. . .

c Journalists discovered the killing was a propagated fake story.

27 / 93

Part 1: Toulmin and argumentation

Toulmin provided the foundation for:

▶ structural representation of arguments;
▶ and the analysis of their defeasibility through counter-arguments.

The birth of (semi)-formal argumentation as a defeasible reasoning framework.

And nowadays, formal argumentation is a uniform framework for NMLs!

28 / 93

Part 1: Toulmin and argumentation

Toulmin provided the foundation for:

▶ structural representation of arguments;
▶ and the analysis of their defeasibility through counter-arguments.

The birth of (semi)-formal argumentation as a defeasible reasoning framework.

And nowadays, formal argumentation is a uniform framework for NMLs!

29 / 93

...

30 / 93

Logical Argumentation for Defeasible Reasoning
Tutorial at COMMA Summer School 2024, Hagen

Kees van Berkel and Christian Straßer
September 13, 2024

Ruhr University Bochum

Outline

Part 2. Warming Up

Part 3. Logical Argumentation

Part 4. Some Metatheory and some Subtleties

1/86

Part 2. Warming Up

Toulmin [18] challenged classical (monotonic) logic by
pointing out that most everyday inferences are subject to

defeat: they are defeasible.

1/86

Toulmin’s take on nonmonotonic inference was an argumentative, informal one.

Premises Conclusion

WarrantBacking
Defeat

Cali is a greyhound. Cali is fast.

Typically greyhounds
are fast.

Wikipedia, … Defeat
ideas?

2/86

When designing a formal model, it’s good to get inspiration
from natural examples, so let’s start with one!

2/86

T
HESE DAYS it is considered especially brave for the royal offspring to kill
dragons.

Princess Charlotte killed the dragon Norbert. Charlotte also
led the expedition into the dungeons of the underworld. The underworld is
a dangerous place and it takes guts to enter it.

Argument a. Charlotte is a brave princess, since she killed Norbert.
Argument b. Charlotte is a brave princess, since she led the expedition to the

underworld.

3/86

T
HESE DAYS it is considered especially brave for the royal offspring to kill
dragons. Princess Charlotte killed the dragon Norbert.

Charlotte also
led the expedition into the dungeons of the underworld. The underworld is
a dangerous place and it takes guts to enter it.

Argument a. Charlotte is a brave princess, since she killed Norbert.

Argument b. Charlotte is a brave princess, since she led the expedition to the
underworld.

3/86

T
HESE DAYS it is considered especially brave for the royal offspring to kill
dragons. Princess Charlotte killed the dragon Norbert. Charlotte also

led the expedition into the dungeons of the underworld. The underworld is
a dangerous place and it takes guts to enter it.

Argument a. Charlotte is a brave princess, since she killed Norbert.
Argument b. Charlotte is a brave princess, since she led the expedition to the

underworld.

3/86

Argument a. Charlotte is a brave princess, since she killed Norbert.
Argument b. Charlotte is a brave princess, since she led the expedition to the

underworld.

I
F, THE DRAGON is still a baby, the act of killing one is cruel and in no way
brave. Poor Norbert was a baby dragon.

Argument c. Charlotte cannot be claimed to be brave based on her killing poor
Norbert, since Norbert is just a baby dragon.

An undercut attack leaves the conclusion of an argument intact!

Central Idea. We abstract away from content and track conflicts with diagrams!

c ab

4/86

Argument a. Charlotte is a brave princess, since she killed Norbert.
Argument b. Charlotte is a brave princess, since she led the expedition to the

underworld.

I
F, THE DRAGON is still a baby, the act of killing one is cruel and in no way
brave.

Poor Norbert was a baby dragon.

Argument c. Charlotte cannot be claimed to be brave based on her killing poor
Norbert, since Norbert is just a baby dragon.

An undercut attack leaves the conclusion of an argument intact!

Central Idea. We abstract away from content and track conflicts with diagrams!

c ab

4/86

Argument a. Charlotte is a brave princess, since she killed Norbert.
Argument b. Charlotte is a brave princess, since she led the expedition to the

underworld.

I
F, THE DRAGON is still a baby, the act of killing one is cruel and in no way
brave. Poor Norbert was a baby dragon.

Argument c. Charlotte cannot be claimed to be brave based on her killing poor
Norbert, since Norbert is just a baby dragon.

An undercut attack leaves the conclusion of an argument intact!

Central Idea. We abstract away from content and track conflicts with diagrams!

c ab

4/86

Argument a. Charlotte is a brave princess, since she killed Norbert.
Argument b. Charlotte is a brave princess, since she led the expedition to the

underworld.

I
F, THE DRAGON is still a baby, the act of killing one is cruel and in no way
brave. Poor Norbert was a baby dragon.

Argument c. Charlotte cannot be claimed to be brave based on her killing poor
Norbert, since Norbert is just a baby dragon.

An undercut attack leaves the conclusion of an argument intact!

Central Idea. We abstract away from content and track conflicts with diagrams!

c ab

4/86

Argument a. Charlotte is a brave princess, since she killed Norbert.
Argument b. Charlotte is a brave princess, since she led the expedition to the

underworld.

I
F, THE DRAGON is still a baby, the act of killing one is cruel and in no way
brave. Poor Norbert was a baby dragon.

Argument c. Charlotte cannot be claimed to be brave based on her killing poor
Norbert, since Norbert is just a baby dragon.

An undercut attack leaves the conclusion of an argument intact!

Central Idea. We abstract away from content and track conflicts with diagrams!

c ab

4/86

Argument a. Charlotte is a brave princess, since she killed Norbert.
Argument b. Charlotte is a brave princess, since she led the expedition to the

underworld.

I
F, THE DRAGON is still a baby, the act of killing one is cruel and in no way
brave. Poor Norbert was a baby dragon.

Argument c. Charlotte cannot be claimed to be brave based on her killing poor
Norbert, since Norbert is just a baby dragon.

An undercut attack leaves the conclusion of an argument intact!

Central Idea. We abstract away from content and track conflicts with diagrams!
c ab

4/86

O
N THE FIRST SIGHT of a living skeleton in the dungeons, princess Charlotte
hid behind the biggest rock she could find.

Argument d. Charlotte is not brave, a brave fighter would never hide behind a
rock.

c b d a

A rebut goes for the conclusion.

5/86

O
N THE FIRST SIGHT of a living skeleton in the dungeons, princess Charlotte
hid behind the biggest rock she could find.

Argument d. Charlotte is not brave, a brave fighter would never hide behind a
rock.

c b d a

A rebut goes for the conclusion.

5/86

O
N THE FIRST SIGHT of a living skeleton in the dungeons, princess Charlotte
hid behind the biggest rock she could find.

Argument d. Charlotte is not brave, a brave fighter would never hide behind a
rock.

c b d a

A rebut goes for the conclusion.

5/86

In order for formal argumentation to offer a useful model of defeasible rea-
soning it needs to

• provide structure to arguments
• track different types of attacks and in this way track conflicts,
• and to indicate when to retract inferences.

6/86

… an (extended) ArgKRR-pipeline for defeasible
argumentative reasoning … 1

1ArgKRR is our term for argumentative knowledge representation and reasoning. KRR exists,
ArgKRR we made up. The idea of describing the approach underlying formal argumentation as a
pipeline is taken from Martin Caminada’s work …

6/86

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences

this
tutorial

7/86

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences

this
tutorial

7/86

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences

this
tutorial

7/86

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences

this
tutorial

7/86

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences

this
tutorial

7/86

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences

this
tutorial

7/86

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences

this
tutorial

7/86

These days it is considered especially brave …
information in natural language

K = { (Cha,Nor) ⊃ brave(Cha), . . .}
information in formal language

(Cha,Nor), (Cha,Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences

now

8/86

Argumentation semantics

In his [10], Dung defined argumentation semantics. They give ways to select
arguments from an argumentation framework, such as

c
b d a

e

Definition

An argumentation framework (in short, AF) is nothing but a directed graph
⟨Args,Attack⟩ with Args representing arguments and Attack representing ar-
gumentative attacks.

9/86

Argumentation semantics

In his [10], Dung defined argumentation semantics. They give ways to select
arguments from an argumentation framework, such as

c
b d a

e

Definition

An argumentation framework (in short, AF) is nothing but a directed graph
⟨Args,Attack⟩ with Args representing arguments and Attack representing ar-
gumentative attacks.

9/86

What are good criteria to select arguments in ⟨Args,Attack⟩?

10/86

A very basic criterion is to select arguments that don’t conflict with one another.

Definition

A set of arguments A ⊆ Args is conflict-free if there a no a,b ∈ A such that
(a,b) ∈ Attack.

b d a
c

e

This is not really satisfying …

11/86

A very basic criterion is to select arguments that don’t conflict with one another.

Definition

A set of arguments A ⊆ Args is conflict-free if there a no a,b ∈ A such that
(a,b) ∈ Attack.

b d a
c

e

This is not really satisfying …

11/86

Definition

A set A defends and argument a if it attacks every attacker of a.

d
b

e

c

a

f g

Definition

A is admissible if it defends every of its arguments and it is conflict-free.

12/86

Exercise: Admissible sets

What are admissible sets in the following AF? How many are there?

a b c

d

e

13/86

Definition

A is complete if it is admissible and it contains all the argument it defends.

d
b

e

c

a

f g

Do you see other complete extensions? How many can you find?

14/86

Definition

A is complete if it is admissible and it contains all the argument it defends.

d
b

e

c

a

f g

Do you see other complete extensions? How many can you find?

14/86

Complete extensions: examples

d
b

e
c

a
f g

d
b

e
c

a
f g

d
b

e
c

a
f g

15/86

Complete extensions: examples

d
b

e
c

a
f g

d
b

e
c

a
f g

d
b

e
c

a
f g

15/86

Complete extensions: examples

d
b

e
c

a
f g

d
b

e
c

a
f g

d
b

e
c

a
f g

15/86

Definition

A is grounded if it is the unique ⊂-smallest complete set.

d
b

e

c

a

f g

16/86

Exercise: grounded

What is the grounded extension in the following framework? How many
arguments does it contain?

a b
c

f

g

d e h

17/86

Simple algorithm to find grounded extension: illustrated

a b

d e

c

f
h

g

Algorithm for finding the grounded set G in a finite AF. Let G⋆ = ∅ and loop:

• add non-attacked to G⋆

• remove arguments attacked by G⋆

18/86

Simple algorithm to find grounded extension: illustrated

a b

d e

c

f
h

g

Algorithm for finding the grounded set G in a finite AF. Let G⋆ = ∅ and loop:

• add non-attacked to G⋆

• remove arguments attacked by G⋆

18/86

Simple algorithm to find grounded extension: illustrated

a b

d e

c

f
h

g

Algorithm for finding the grounded set G in a finite AF. Let G⋆ = ∅ and loop:

• add non-attacked to G⋆

• remove arguments attacked by G⋆

18/86

Simple algorithm to find grounded extension: illustrated

a b

d e

c

f
h

g

Algorithm for finding the grounded set G in a finite AF. Let G⋆ = ∅ and loop:

• add non-attacked to G⋆

• remove arguments attacked by G⋆

18/86

Simple algorithm to find grounded extension: illustrated

a b

d e

c

f
h

g

Algorithm for finding the grounded set G in a finite AF. Let G⋆ = ∅ and loop:

• add non-attacked to G⋆

• remove arguments attacked by G⋆

18/86

Definition

A is stable if it is conflict-free and it attacks every argument that is not in A.

d
b

e

c

a

f g

Do you see another one?

19/86

Exercise: stable extensions

What are stable sets in the following AF? How many can you find?

b a

c

d

e

20/86

Exercise: stable extensions

What are stable sets in the following AF? How many can you find?

b a

c

d

e

20/86

Other semantics

There are many other argumentation semantics. For instance, instead of selecting
the minimal complete set, one can be interested in maximal complete sets
(preferred semantics). Other semantics were specifically designed to deal with
odd attack cycles (e.g., self-attacking arguments, etc.) or explanations. For an
overview see [7].

21/86

Part 3. Logical Argumentation

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences 22/86

Let’s start with a story …

C
HARLOTTE fought at the great battle with the dragon kingdom. Two fierce
dragons were particularly frightening, the twins Norbert and Albert. At

the victory dinner, Charlotte’s sister boasted that Charlotte killed the dragon
Norbert, not Albert. In contrast, Charlotte’s brother claims that she killed
Albert, not Norbert. It takes a brave person to kill a dragon.

c. Charlotte killed Norbert and not Albert, since her sister says so.
d. Charlotte killed Albert and not Norbert, since her brother says so.

Let us translate this into a formal language.

23/86

Let’s start with a story …

C
HARLOTTE fought at the great battle with the dragon kingdom. Two fierce
dragons were particularly frightening, the twins Norbert and Albert. At

the victory dinner, Charlotte’s sister boasted that Charlotte killed the dragon
Norbert, not Albert. In contrast, Charlotte’s brother claims that she killed
Albert, not Norbert. It takes a brave person to kill a dragon.

c. Charlotte killed Norbert and not Albert, since her sister says so.
d. Charlotte killed Albert and not Norbert, since her brother says so.

Let us translate this into a formal language.

23/86

Knowledge bases

In the following we will us a simple language, including the usual connectives
¬,∧,∨,⊃.

Definition

A knowledge base K is then given by:

K = ⟨As,Ad⟩

where As and Ad are sets of formulas, called assumptions.

We will make a distinction between two types of assumptions:

strict assumptions As. these we consider to hold certainly
defeasible assumptions Ad. these hold by default, but given good reasons, we

may give up on them

24/86

Knowledge bases

In the following we will us a simple language, including the usual connectives
¬,∧,∨,⊃.

Definition

A knowledge base K is then given by:

K = ⟨As,Ad⟩

where As and Ad are sets of formulas, called assumptions.

We will make a distinction between two types of assumptions:

strict assumptions As. these we consider to hold certainly
defeasible assumptions Ad. these hold by default, but given good reasons, we

may give up on them

24/86

Knowledge bases

In the following we will us a simple language, including the usual connectives
¬,∧,∨,⊃.

Definition

A knowledge base K is then given by:

K = ⟨As,Ad⟩

where As and Ad are sets of formulas, called assumptions.

We will make a distinction between two types of assumptions:

strict assumptions As. these we consider to hold certainly
defeasible assumptions Ad. these hold by default, but given good reasons, we

may give up on them 24/86

C
HARLOTTE fought at the great battle with the dragon kingdom. Two fierce
dragons were particularly frightening, the twins Norbert and Albert. At

the victory dinner, Charlotte’s sister boasted that Charlotte killed the dragon
Norbert, not Albert. In contrast, Charlotte’s brother claims that Charlotte
killed Albert, not Norbert. It takes a brave person to kill a dragon.

Our strict assumptions As are given by:

As =
{

sisn, broa,

Cha(Nor) ⊃ brave(Cha)

Cha(Alb) ⊃ brave(Cha)
}
,

where (skipping the subscript in “ Cha”)

n = (Nor) ∧ ¬ (Alb)
a = (Alb) ∧ ¬ (Nor)

25/86

C
HARLOTTE fought at the great battle with the dragon kingdom. Two fierce
dragons were particularly frightening, the twins Norbert and Albert. At

the victory dinner, Charlotte’s sister boasted that Charlotte killed the dragon
Norbert, not Albert. In contrast, Charlotte’s brother claims that Charlotte
killed Albert, not Norbert. It takes a brave person to kill a dragon.

Our strict assumptions As are given by:

As =
{

sisn, broa,

Cha(Nor) ⊃ brave(Cha)

Cha(Alb) ⊃ brave(Cha)
}
,

where (skipping the subscript in “ Cha”)

n = (Nor) ∧ ¬ (Alb)
a = (Alb) ∧ ¬ (Nor)

25/86

What about defeasible assumptions for modeling our story?

25/86

C
HARLOTTE fought at the great battle with the dragon kingdom. Two fierce
dragons were particularly frightening, the twins Norbert and Albert. At

the victory dinner, Charlotte’s sister boasted that Charlotte killed the dragon
Norbert, not Albert. In contrast, Charlotte’s brother claims that she killed
Albert, not Norbert. It takes a brave person to kill a dragon.

What somebody claims is not always certainly the case, but (given a charita-
ble interpretation) it is so by default. We model this by means of defeasible
assumptions.

26/86

Definition

In the following our defeasible assumptions are given by:

Ad =
{

agentϕ ⊃ ϕ | ϕ ∈ L
}

We let:

agentϕ = agentϕ ⊃ ϕ

Read: agent is a reliably source concerning ϕ

and so
Ad =

{
agentϕ | ϕ ∈ L, agent ∈ Agents

}

Note that, by Modus Ponens, n follows from sisn and sisn.

27/86

Definition

In the following our defeasible assumptions are given by:

Ad =
{

agentϕ ⊃ ϕ | ϕ ∈ L
}

We let:

agentϕ = agentϕ ⊃ ϕ

Read: agent is a reliably source concerning ϕ

and so
Ad =

{
agentϕ | ϕ ∈ L, agent ∈ Agents

}

Note that, by Modus Ponens, n follows from sisn and sisn.

27/86

Definition

In the following our defeasible assumptions are given by:

Ad =
{

agentϕ ⊃ ϕ | ϕ ∈ L
}

We let:

agentϕ = agentϕ ⊃ ϕ

Read: agent is a reliably source concerning ϕ

and so
Ad =

{
agentϕ | ϕ ∈ L, agent ∈ Agents

}

Note that, by Modus Ponens, n follows from sisn and sisn.

27/86

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences 28/86

How to generate arguments?

28/86

Formal arguments

• Arguments conclude something on the basis of some assumptions (or
premises). We write:

ϕ1, . . . , ϕn ⇒ ψ

where ϕ1, . . . , ϕn ∈ K are assumptions in our knowledge base.

29/86

Formal arguments

For instance, we want to form arguments like:

sisn, sisn

⇒

n

• The sister states that Charlotte killed Norbert but not Albert (sisn),
• we assume (defeasibly) that she reliably states so (sisn),
• therefore Charlotte killed Norbert but not Albert (n).
• Arguments have the form of sequents:

ψ1, . . . , ψn ⇒ ϕ.

30/86

Formal arguments

For instance, we want to form arguments like:

sisn,

sisn

⇒

n

• The sister states that Charlotte killed Norbert but not Albert (sisn),

• we assume (defeasibly) that she reliably states so (sisn),
• therefore Charlotte killed Norbert but not Albert (n).
• Arguments have the form of sequents:

ψ1, . . . , ψn ⇒ ϕ.

30/86

Formal arguments

For instance, we want to form arguments like:

sisn, sisn ⇒

n

• The sister states that Charlotte killed Norbert but not Albert (sisn),
• we assume (defeasibly) that she reliably states so (sisn),

• therefore Charlotte killed Norbert but not Albert (n).
• Arguments have the form of sequents:

ψ1, . . . , ψn ⇒ ϕ.

30/86

Formal arguments

For instance, we want to form arguments like:

sisn, sisn ⇒ n

• The sister states that Charlotte killed Norbert but not Albert (sisn),
• we assume (defeasibly) that she reliably states so (sisn),
• therefore Charlotte killed Norbert but not Albert (n).

• Arguments have the form of sequents:

ψ1, . . . , ψn ⇒ ϕ.

30/86

Formal arguments

For instance, we want to form arguments like:

sisn, sisn ⇒ n

• The sister states that Charlotte killed Norbert but not Albert (sisn),
• we assume (defeasibly) that she reliably states so (sisn),
• therefore Charlotte killed Norbert but not Albert (n).
• Arguments have the form of sequents:

ψ1, . . . , ψn ⇒ ϕ.

30/86

But, how to generate arguments?

30/86

The place for logic

We use logic for that! Paradigmatically we will stick to classical logic for this
tutorial.

We have

ϕ1, . . . , ϕn ⇒ ψ

iff
ψ follows by classical logic from {ϕ1, . . . , ϕn}. (In signs: {ϕ1, . . . , ϕn} ⊢ ψ)

31/86

The place for logic

We use logic for that! Paradigmatically we will stick to classical logic for this
tutorial. We have

ϕ1, . . . , ϕn ⇒ ψ

iff
ψ follows by classical logic from {ϕ1, . . . , ϕn}.

(In signs: {ϕ1, . . . , ϕn} ⊢ ψ)

31/86

The place for logic

We use logic for that! Paradigmatically we will stick to classical logic for this
tutorial. We have

ϕ1, . . . , ϕn ⇒ ψ

iff
ψ follows by classical logic from {ϕ1, . . . , ϕn}. (In signs: {ϕ1, . . . , ϕn} ⊢ ψ)

31/86

How to derive arguments?

We can use proof theory. There are many options:

• Hilbert style
• Natural deduction
• Semantic tableaux
• Sequent calculi

32/86

How to derive arguments?

Sequent calculi seem especially interesting when dealing with arguments, since
they allow to construct new arguments from arguments by allowing to manipulate
both the premises and the conclusion of an argument. For instance,

ϕ1, ϕ2, . . . , ϕn ⇒ ψ
L∧

ϕ1 ∧ ϕ2, ϕ3, . . . , ϕn ⇒ ψ

ϕ1, . . . , ϕn ⇒ ψ1 ϕ1, . . . , ϕn ⇒ ψ2 R∧
ϕ1, . . . , ϕn ⇒ ψ1 ∧ ψ2

ϕ, ϕ1, . . . , ϕn ⇒ ψ ϕ′, ϕ1, . . . , ϕn ⇒ ψ
L∨

ϕ ∨ ϕ′, ϕ1, . . . , ϕn ⇒ ψ

33/86

How to derive arguments?

Sequent calculi seem especially interesting when dealing with arguments, since
they allow to construct new arguments from arguments by allowing to manipulate
both the premises and the conclusion of an argument. For instance,

ϕ1, ϕ2, . . . , ϕn ⇒ ψ
L∧

ϕ1 ∧ ϕ2, ϕ3, . . . , ϕn ⇒ ψ

ϕ1, . . . , ϕn ⇒ ψ1 ϕ1, . . . , ϕn ⇒ ψ2 R∧
ϕ1, . . . , ϕn ⇒ ψ1 ∧ ψ2

ϕ, ϕ1, . . . , ϕn ⇒ ψ ϕ′, ϕ1, . . . , ϕn ⇒ ψ
L∨

ϕ ∨ ϕ′, ϕ1, . . . , ϕn ⇒ ψ

33/86

How to derive arguments?

Sequent calculi seem especially interesting when dealing with arguments, since
they allow to construct new arguments from arguments by allowing to manipulate
both the premises and the conclusion of an argument. For instance,

ϕ1, ϕ2, . . . , ϕn ⇒ ψ
L∧

ϕ1 ∧ ϕ2, ϕ3, . . . , ϕn ⇒ ψ

ϕ1, . . . , ϕn ⇒ ψ1 ϕ1, . . . , ϕn ⇒ ψ2 R∧
ϕ1, . . . , ϕn ⇒ ψ1 ∧ ψ2

ϕ, ϕ1, . . . , ϕn ⇒ ψ ϕ′, ϕ1, . . . , ϕn ⇒ ψ
L∨

ϕ ∨ ϕ′, ϕ1, . . . , ϕn ⇒ ψ

33/86

More arguments obtained from our knowledge base …

33/86

Trusting the sister we get:

c0 : sisn, sisn ⇒ n
c1 : sisn, sisn ⇒ (Nor)
c2 : sisn, sisn ⇒ ¬ (Alb)
c∨ : sisn, sisn ⇒ n ∨ a

g : sisn, sisn, broa ⇒ ¬ broa

• If the sister is reliable , the brother is wrong !

34/86

Trusting the sister we get:

c0 : sisn, sisn ⇒ n
c1 : sisn, sisn ⇒ (Nor)
c2 : sisn, sisn ⇒ ¬ (Alb)
c∨ : sisn, sisn ⇒ n ∨ a
g : sisn, sisn, broa ⇒ ¬ broa

• If the sister is reliable , the brother is wrong !

34/86

Trusting the sister we get:

c0 : sisn, sisn ⇒ n
c1 : sisn, sisn ⇒ (Nor)
c2 : sisn, sisn ⇒ ¬ (Alb)
c∨ : sisn, sisn ⇒ n ∨ a
g : sisn, sisn, broa ⇒ ¬ broa

• If the sister is reliable , the brother is wrong !

34/86

Analogously, trusting the brother we get:

d0 : broa, broa ⇒ broa
d1 : broa, broa ⇒ a

d2 : broa, broa ⇒ (Alb)
d3 : broa, broa ⇒ ¬ (Nor)
d∨ : broa, broa ⇒ n ∨ a
h : broa, broa, sisn ⇒ ¬ sisn

35/86

Analogously, trusting the brother we get:

d0 : broa, broa ⇒ broa
d1 : broa, broa ⇒ a
d2 : broa, broa ⇒ (Alb)
d3 : broa, broa ⇒ ¬ (Nor)

d∨ : broa, broa ⇒ n ∨ a
h : broa, broa, sisn ⇒ ¬ sisn

35/86

Analogously, trusting the brother we get:

d0 : broa, broa ⇒ broa
d1 : broa, broa ⇒ a
d2 : broa, broa ⇒ (Alb)
d3 : broa, broa ⇒ ¬ (Nor)
d∨ : broa, broa ⇒ n ∨ a
h : broa, broa, sisn ⇒ ¬ sisn

35/86

Brief Detour: two ways to formally model defeasible inferences

Method 1. Use a deductive standard (e.g., classical logic) with “strict” inference
rules and apply these to defeasible assumptions. (This part of the
tutorial; but also Makinson’s Plausible Assumptions [12], logic
programming with default negation, adaptive logics, etc.)

Method 2 Use strict assumptions in combination with defeasible inference
rules. (E.g., Reiter’s default logic [15].). Options:

• Nonmonotonic conditionals agentϕ⇝ ϕ in the object language,
equipped with generic defeasible modus ponens for⇝; or

• defeasible inference rules agentϕ⇝ ϕ as part of a
(nonmonotonic) proof calculus

Hybrid Method Use both strict and defeasible assumptions, use both, strict rules
and defeasible rules. (E.g., ASPIC [13], [8])

Approaches can often be translated: e.g., ASP and default logic in [11, 14].

36/86

Brief Detour: two ways to formally model defeasible inferences

Method 1. Use a deductive standard (e.g., classical logic) with “strict” inference
rules and apply these to defeasible assumptions. (This part of the
tutorial; but also Makinson’s Plausible Assumptions [12], logic
programming with default negation, adaptive logics, etc.)

Method 2 Use strict assumptions in combination with defeasible inference
rules. (E.g., Reiter’s default logic [15].). Options:

• Nonmonotonic conditionals agentϕ⇝ ϕ in the object language,
equipped with generic defeasible modus ponens for⇝; or

• defeasible inference rules agentϕ⇝ ϕ as part of a
(nonmonotonic) proof calculus

Hybrid Method Use both strict and defeasible assumptions, use both, strict rules
and defeasible rules. (E.g., ASPIC [13], [8])

Approaches can often be translated: e.g., ASP and default logic in [11, 14].

36/86

Brief Detour: two ways to formally model defeasible inferences

Method 1. Use a deductive standard (e.g., classical logic) with “strict” inference
rules and apply these to defeasible assumptions. (This part of the
tutorial; but also Makinson’s Plausible Assumptions [12], logic
programming with default negation, adaptive logics, etc.)

Method 2 Use strict assumptions in combination with defeasible inference
rules. (E.g., Reiter’s default logic [15].). Options:

• Nonmonotonic conditionals agentϕ⇝ ϕ in the object language,
equipped with generic defeasible modus ponens for⇝; or

• defeasible inference rules agentϕ⇝ ϕ as part of a
(nonmonotonic) proof calculus

Hybrid Method Use both strict and defeasible assumptions, use both, strict rules
and defeasible rules. (E.g., ASPIC [13], [8])

Approaches can often be translated: e.g., ASP and default logic in [11, 14].

36/86

Brief Detour: two ways to formally model defeasible inferences

Method 1. Use a deductive standard (e.g., classical logic) with “strict” inference
rules and apply these to defeasible assumptions. (This part of the
tutorial; but also Makinson’s Plausible Assumptions [12], logic
programming with default negation, adaptive logics, etc.)

Method 2 Use strict assumptions in combination with defeasible inference
rules. (E.g., Reiter’s default logic [15].). Options:

• Nonmonotonic conditionals agentϕ⇝ ϕ in the object language,
equipped with generic defeasible modus ponens for⇝; or

• defeasible inference rules agentϕ⇝ ϕ as part of a
(nonmonotonic) proof calculus

Hybrid Method Use both strict and defeasible assumptions, use both, strict rules
and defeasible rules. (E.g., ASPIC [13], [8])

Approaches can often be translated: e.g., ASP and default logic in [11, 14]. 36/86

How to formally define argumentative attacks?

36/86

There are many options!

You recall rebuttal?

Definition

rebuttal. Γ1 ⇒ ϕ rebuts Γ2 ⇒ −ϕ if Γ2 ∩ Ad ̸= ∅ and where −ϕ = ψ if
ϕ = ¬ψ and −ϕ = ¬ψ else.

c1:
[

sisn, sisn ⇒
(Nor)

]

c2:
[

sisn, sisn ⇒
¬ (Alb)

]
d3:

[
broa, broa ⇒
¬ (Nor)

]

d2:
[

broa, broa ⇒
(Alb)

]

37/86

There are many options! You recall rebuttal?

Definition

rebuttal. Γ1 ⇒ ϕ rebuts Γ2 ⇒ −ϕ if Γ2 ∩ Ad ̸= ∅ and where −ϕ = ψ if
ϕ = ¬ψ and −ϕ = ¬ψ else.

c1:
[

sisn, sisn ⇒
(Nor)

]

c2:
[

sisn, sisn ⇒
¬ (Alb)

]
d3:

[
broa, broa ⇒
¬ (Nor)

]

d2:
[

broa, broa ⇒
(Alb)

]

37/86

Definition

direct defeat. Γ1 ⇒ ¬ϕ directly defeats Γ2, ϕ⇒ ψ, if ϕ ∈ Ad.

c1:
[

sisn ⇒
(Nor)

]

d2:
[

broa ⇒
(Alb)

]
g:

[
sisn ⇒

¬ broa

]
h:

[
broa ⇒

¬ sisn

]
d∨:

[
broa ⇒
n ∨ a

]

c∨:
[

sisn ⇒
n ∨ a

]

In the following we omit strict assumptions in the AFs, to avoid clutter.
38/86

These days it is considered especially brave …
information in natural language

K = { Cha(Nor) ⊃ brave(Cha), . . .}
information in formal language

Cha(Nor), Cha(Nor) ⊃ brave(Cha) ⇒ brave(Cha)
generate arguments and attacks (logic)

a → b → c
argumentation framework

a → b → c
select arguments via semantics

K |∼ϕ

determine consequences

Why does ϕ follow, rather than ψ?
explain consequences 39/86

How to determine consequences?

39/86

First we fix an argumentation semantics sem.

• For instance, sem = stable or sem = grounded.

How would you define a consequence relation for single extension seman-
tics, such as grounded?

If the semantics leads to only one extension E (think: grounded), we can
simply define:

• K |∼ϕ iff there is an argument a in E with conclusion ϕ.

Problem

Many semantics have multiple extensions (think: stable semantics).

40/86

First we fix an argumentation semantics sem.

• For instance, sem = stable or sem = grounded.

How would you define a consequence relation for single extension seman-
tics, such as grounded?

If the semantics leads to only one extension E (think: grounded), we can
simply define:

• K |∼ϕ iff there is an argument a in E with conclusion ϕ.

Problem

Many semantics have multiple extensions (think: stable semantics).

40/86

First we fix an argumentation semantics sem.

• For instance, sem = stable or sem = grounded.

How would you define a consequence relation for single extension seman-
tics, such as grounded?

If the semantics leads to only one extension E (think: grounded), we can
simply define:

• K |∼ϕ iff there is an argument a in E with conclusion ϕ.

Problem

Many semantics have multiple extensions (think: stable semantics).

40/86

First we fix an argumentation semantics sem.

• For instance, sem = stable or sem = grounded.

How would you define a consequence relation for single extension seman-
tics, such as grounded?

If the semantics leads to only one extension E (think: grounded), we can
simply define:

• K |∼ϕ iff there is an argument a in E with conclusion ϕ.

Problem

Many semantics have multiple extensions (think: stable semantics).
40/86

How many stable sets can you find?

c1:
[

sisn ⇒
(Nor)

]

d2:
[

broa ⇒
(Alb)

]
g:

[
sisn ⇒

¬ broa

]
h:

[
broa ⇒

¬ sisn

]
d∨:

[
broa ⇒
n ∨ a

]

c∨:
[

sisn ⇒
n ∨ a

]

41/86

Stable 1: the brother’s right

c1:
[

sisn ⇒
(Nor)

]
g:

[
sisn ⇒

¬ broa

] d2:
[

broa ⇒
(Alb)

]

h:
[

broa ⇒
¬ sisn

]
d∨:

[
broa ⇒
n ∨ a

]

c∨:
[

sisn ⇒
n ∨ a

]

42/86

Stable 2: the sister’s right

c1:
[

sisn ⇒
(Nor)

]
g:

[
sisn ⇒

¬ broa

] d2:
[

broa ⇒
(Alb)

]

h:
[

broa ⇒
¬ sisn

]
d∨:

[
broa ⇒
n ∨ a

]

c∨:
[

sisn ⇒
n ∨ a

]

43/86

So, how to define consequence for stable semantics?

43/86

Here’s a natural idea:

• K |∼ϕ iff in every stable set E there is an argument a with conclusion ϕ.

What do you think we get?
(Recall: n = (Nor) ∧ ¬ (Alb) and a = (Alb) ∧ ¬ (Nor)))
□ K |∼n
□ K |∼a
□ K |∼n ∨ a

The claim n ∨ a is a so-called floating conclusion. It is concluded by two
otherwise conflicting arguments:

c∨ : sisn, sisn ⇒ n ∨ a
d∨ : broa, broa ⇒ n ∨ a

44/86

Here’s a natural idea:

• K |∼ϕ iff in every stable set E there is an argument a with conclusion ϕ.

What do you think we get?
(Recall: n = (Nor) ∧ ¬ (Alb) and a = (Alb) ∧ ¬ (Nor)))
□ K |∼n
□ K |∼a
□ K |∼n ∨ a

The claim n ∨ a is a so-called floating conclusion. It is concluded by two
otherwise conflicting arguments:

c∨ : sisn, sisn ⇒ n ∨ a
d∨ : broa, broa ⇒ n ∨ a

44/86

Here’s a natural idea:

• K |∼ϕ iff in every stable set E there is an argument a with conclusion ϕ.

What do you think we get?
(Recall: n = (Nor) ∧ ¬ (Alb) and a = (Alb) ∧ ¬ (Nor)))
□ K |∼n
□ K |∼a
□ K |∼n ∨ a

The claim n ∨ a is a so-called floating conclusion. It is concluded by two
otherwise conflicting arguments:

c∨ : sisn, sisn ⇒ n ∨ a
d∨ : broa, broa ⇒ n ∨ a 44/86

Do you have ideas of how else to define a consequence
relation?

44/86

Definition

skeptical, shared arguments. K |∼Att,sem
∩arg ϕ iff there is an argument a with

conclusions ϕ that is contained in every sem-extension of
AFAtt(K). “intersection of arguments”

Note that with this consequence we don’t get the floating conclusion n ∨ a.

Can you see why? check

We already had:

Definition

skeptical, shared conclusions. K |∼Att,sem
∩con ϕ iff in every sem-extension S of

AFAtt(K) there is an argument a with conclusion ϕ.
“intersection of consequences”

45/86

Definition

skeptical, shared arguments. K |∼Att,sem
∩arg ϕ iff there is an argument a with

conclusions ϕ that is contained in every sem-extension of
AFAtt(K). “intersection of arguments”

Note that with this consequence we don’t get the floating conclusion n ∨ a.

Can you see why? check

We already had:

Definition

skeptical, shared conclusions. K |∼Att,sem
∩con ϕ iff in every sem-extension S of

AFAtt(K) there is an argument a with conclusion ϕ.
“intersection of consequences”

45/86

Definition

skeptical, shared arguments. K |∼Att,sem
∩arg ϕ iff there is an argument a with

conclusions ϕ that is contained in every sem-extension of
AFAtt(K). “intersection of arguments”

Note that with this consequence we don’t get the floating conclusion n ∨ a.

Can you see why? check

We already had:

Definition

skeptical, shared conclusions. K |∼Att,sem
∩con ϕ iff in every sem-extension S of

AFAtt(K) there is an argument a with conclusion ϕ.
“intersection of consequences” 45/86

And there is:

Definition

credulous. K |∼Att,sem
∪ ϕ iff there is a sem-extension in which there is an

argument a with conclusion ϕ.

46/86

Part 4. Some Metatheory and some
Subtleties

Semantic collapse

complete
MEnaive

ME
grounded

SE
ideal
SE

preferred
ME

stage
ME semi-stable

ME
stable

ME

eager
SE

Solid arrows: general logical relations. Dashed arrows: additional logical relations
in sequent-based argumentation where Att ∈ {{DirDef}, {DirDef, ConDef}, {Def}}.
[2]

47/86

Caution

When defining attacks and using semantics, one has to be careful.

In the following we highlight some dangers and then list some results about
“good combinations”.

48/86

T
HE KING was so proud of princess Charlotte. He saw her being a brave
fighter.

We get the new argument:

i : kingbrave(Cha), kingbrave(Cha) ⇒ brave(Cha)

In order to highlight a problem we also note the following arguments:

x0 : sisn, sisn, broa, broa ⇒ ⊥
x1 : sisn, sisn, broa, broa ⇒ ¬ kingbrave(Cha)

y : sisn, broa ⇒ ¬(sisn ∧ broa)

49/86

T
HE KING was so proud of princess Charlotte. He saw her being a brave
fighter.

We get the new argument:

i : kingbrave(Cha), kingbrave(Cha) ⇒ brave(Cha)

In order to highlight a problem we also note the following arguments:

x0 : sisn, sisn, broa, broa ⇒ ⊥
x1 : sisn, sisn, broa, broa ⇒ ¬ kingbrave(Cha)

y : sisn, broa ⇒ ¬(sisn ∧ broa)

49/86

T
HE KING was so proud of princess Charlotte. He saw her being a brave
fighter.

We get the new argument:

i : kingbrave(Cha), kingbrave(Cha) ⇒ brave(Cha)

In order to highlight a problem we also note the following arguments:

x0 : sisn, sisn, broa, broa ⇒ ⊥

x1 : sisn, sisn, broa, broa ⇒ ¬ kingbrave(Cha)

y : sisn, broa ⇒ ¬(sisn ∧ broa)

49/86

T
HE KING was so proud of princess Charlotte. He saw her being a brave
fighter.

We get the new argument:

i : kingbrave(Cha), kingbrave(Cha) ⇒ brave(Cha)

In order to highlight a problem we also note the following arguments:

x0 : sisn, sisn, broa, broa ⇒ ⊥
x1 : sisn, sisn, broa, broa ⇒ ¬ kingbrave(Cha)

y : sisn, broa ⇒ ¬(sisn ∧ broa)

49/86

T
HE KING was so proud of princess Charlotte. He saw her being a brave
fighter.

We get the new argument:

i : kingbrave(Cha), kingbrave(Cha) ⇒ brave(Cha)

In order to highlight a problem we also note the following arguments:

x0 : sisn, sisn, broa, broa ⇒ ⊥
x1 : sisn, sisn, broa, broa ⇒ ¬ kingbrave(Cha)

y : sisn, broa ⇒ ¬(sisn ∧ broa)

49/86

g:
[

sisn, sisn ⇒
¬ broa

]

h:
[

broa, broa ⇒
¬ sisn

]

x:
[

sisn, broa, sisn, broa ⇒
. . .

]

y:
[

sisn, broa ⇒
¬(sisn ∧ broa)

]
i:
[

kingbrave(Cha), kingbrave(Cha) ⇒
brave(Cha)

]

Problem

Inconsistent arguments contaminate the grounded selection.
50/86

Where sem(K,Att) denotes the set of all sem-extensions of the AF based on K
and Att.

Definition

non-interference [19, 9]. Let K be a knowledge base. Where Γ is
syntactically unrelated to K and consistent with As. Let
K⊕ Γ = ⟨As ∪ Γ,Ad⟩,

sem(K,Att) = {X ∩ Arg(K) | X ∈ sem(K⊕ Γ,Att)}.

Proposition 1

Non-interference is, in general, not satisfied for Att = {direct defeat} and
grounded semantics.

51/86

Where sem(K,Att) denotes the set of all sem-extensions of the AF based on K
and Att.

Definition

non-interference [19, 9]. Let K be a knowledge base. Where Γ is
syntactically unrelated to K and consistent with As. Let
K⊕ Γ = ⟨As ∪ Γ,Ad⟩,

sem(K,Att) = {X ∩ Arg(K) | X ∈ sem(K⊕ Γ,Att)}.

Proposition 2

Non-interference is, in general, not satisfied for Att = {direct defeat} and
grounded semantics.

51/86

But how to achieve this. How to block arguments that
contaminate the argumentation framework (due to logi-
cal explosion)?

51/86

Definition

consistency defeats. Γ1 ⇒ ¬
∧
Γ2 consistency defeats Γ2, Γ′2 ⇒ ψ, if Γ1 ⊆ As

and Γ2 ⊆ Ad.

g:
[

sisn, sisn ⇒
¬ broa

]

h:
[

broa, broa ⇒
¬ sisn

]

x:
[

sisn, broa, sisn, broa ⇒
. . .

]
y:
[

sisn, broa ⇒
¬(sisn ∧ broa)

]

i:
[

kingbrave(Cha), kingbrave(Cha) ⇒
brave(Cha)

]
52/86

Results: Non-interference

Proposition 3

Let sem ∈ {stable, grounded}. Non-interference is satisfied for Att ∈{
{direct defeat, consistency defeat}, {defeat}

}
and sem-semantics.

where

• Γ ⇒ ¬
∧
∆ defeats Λ ⇒ ϕ iff ∅ ̸= ∆ ⊆ Λ

53/86

So far, we have considered a binary conflict: the one between
what the sister and what the brother states. Triple conflicts
are conflicts between three statements. They come with their

own problems …

53/86

A Story with a Triple conflict

N
ORBERT AND ALBERT are the last dragons. They are twins, only distin-
guished by the fact that Norbert spouts blue fire, while Albert spouts

red fire.

At the great battle against the underworld, the princess’ brother saw
her killing the red fire spouting Albert , and her sister saw her killing the blue
fire spouting Norbert . However, the king saw a dragon flying over the castle
right after the battle .

This gives rise to the following knowledge base:

As =
{

sis (Nor), bro (Alb), king¬((Nor) ∧ (Alb))
}

54/86

A Story with a Triple conflict

N
ORBERT AND ALBERT are the last dragons. They are twins, only distin-
guished by the fact that Norbert spouts blue fire, while Albert spouts

red fire. At the great battle against the underworld, the princess’ brother saw
her killing the red fire spouting Albert ,

and her sister saw her killing the blue
fire spouting Norbert . However, the king saw a dragon flying over the castle
right after the battle .

This gives rise to the following knowledge base:

As =
{

sis (Nor), bro (Alb), king¬((Nor) ∧ (Alb))
}

54/86

A Story with a Triple conflict

N
ORBERT AND ALBERT are the last dragons. They are twins, only distin-
guished by the fact that Norbert spouts blue fire, while Albert spouts

red fire. At the great battle against the underworld, the princess’ brother saw
her killing the red fire spouting Albert , and her sister saw her killing the blue
fire spouting Norbert .

However, the king saw a dragon flying over the castle
right after the battle .

This gives rise to the following knowledge base:

As =
{

sis (Nor), bro (Alb), king¬((Nor) ∧ (Alb))
}

54/86

A Story with a Triple conflict

N
ORBERT AND ALBERT are the last dragons. They are twins, only distin-
guished by the fact that Norbert spouts blue fire, while Albert spouts

red fire. At the great battle against the underworld, the princess’ brother saw
her killing the red fire spouting Albert , and her sister saw her killing the blue
fire spouting Norbert . However, the king saw a dragon flying over the castle
right after the battle .

This gives rise to the following knowledge base:

As =
{

sis (Nor), bro (Alb), king¬((Nor) ∧ (Alb))
}

54/86

ab:
[

sis (Nor)

bro (Alb)

]
⇒

¬ king¬((Nor) ∧ (Alb))

ac:
[

sis (Nor)

king¬((Nor) ∧ (Alb))

]
⇒¬ bro (Alb)

bc:
[

bro (Alb),

king¬((Nor) ∧ (Alb))

]
⇒¬ sis (Nor)

a′:
[

sis (Nor)
]
⇒

¬(bro (Alb) ∧ king¬((Nor) ∧ (Alb)))

b′:
[

bro (Alb),
]
⇒

¬(sis (Nor) ∧ king¬((Nor) ∧ (Alb)))

c′:
[

king¬((Nor) ∧ (Alb))
]

⇒¬(sis (Nor) ∧ bro (Alb))

a:
[

sis (Nor)
]

⇒ (Nor)

b:
[

bro (Alb)
]

⇒ (Alb)

c:
[

king¬((Nor) ∧ (Alb))
]

⇒¬((Nor) ∧ (Alb)) 55/86

Rationality postulates

Let E ∈ sem(K,Att).

Definition

consistency of extensions. The set {ϕ | Γ ⇒ ϕ ∈ E} is consistent.

Proposition 4

With Att = {Defeat} and sem = stable, consistency of extension is violated.

56/86

Rationality postulates

Let E ∈ sem(K,Att).

Definition

consistency of extensions. The set {ϕ | Γ ⇒ ϕ ∈ E} is consistent.

Proposition 5

With Att = {Defeat} and sem = stable, consistency of extension is violated.

56/86

The same scenario with direct defeat …

ab:
[

sis (Nor)

bro (Alb)

]
⇒

¬ king¬((Nor) ∧ (Alb))

ac:
[

sis (Nor)

king¬((Nor) ∧ (Alb))

]
⇒¬ bro (Alb)

bc:
[

bro (Alb),

king¬((Nor) ∧ (Alb))

]
⇒¬ sis (Nor)

a′:
[

sis (Nor)
]
⇒

¬(bro (Alb) ∧ king¬((Nor) ∧ (Alb)))

b′:
[

bro (Alb),
]
⇒

¬(sis (Nor) ∧ king¬((Nor) ∧ (Alb)))

c′:
[

king¬((Nor) ∧ (Alb))
]

⇒¬(sis (Nor) ∧ bro (Alb))

a:
[

sis (Nor)
]

⇒ (Nor)

b:
[

bro (Alb)
]

⇒ (Alb)

c:
[

king¬((Nor) ∧ (Alb))
]

⇒¬((Nor) ∧ (Alb))
57/86

The same scenario with direct defeat … a stable extension

ab:
[

sis (Nor)

bro (Alb)

]
⇒

¬ king¬((Nor) ∧ (Alb))

ac:
[

sis (Nor)

king¬((Nor) ∧ (Alb))

]
⇒¬ bro (Alb)

bc:
[

bro (Alb),

king¬((Nor) ∧ (Alb))

]
⇒¬ sis (Nor)

a′:
[

sis (Nor)
]
⇒

¬(bro (Alb) ∧ king¬((Nor) ∧ (Alb)))

b′:
[

bro (Alb),
]
⇒

¬(sis (Nor) ∧ king¬((Nor) ∧ (Alb)))

c′:
[

king¬((Nor) ∧ (Alb))
]

⇒¬(sis (Nor) ∧ bro (Alb))

a:
[

sis (Nor)
]

⇒ (Nor)

b:
[

bro (Alb)
]

⇒ (Alb)

c:
[

king¬((Nor) ∧ (Alb))
]

⇒¬((Nor) ∧ (Alb))

a:
[

siskNor
]

⇒ kNor

b:
[

brokAlb
]

⇒ kAlb

c:
[

king¬(kNor ∧ kAlb)
]

⇒¬(kNor ∧ kAlb)

ab:
[

siskNor
brokAlb

]
⇒

¬ king¬(kNor ∧ kAlb)

ac:
[

siskNor
king¬(kNor ∧ kAlb)

]
⇒¬ brokAlb

bc:
[

brokAlb,

king¬(kNor ∧ kAlb)

]
⇒¬ siskNor

c′:
[

king¬(kNor ∧ kAlb)
]

⇒¬(siskNor ∧ brokAlb)

b′:
[

brokAlb,
]
⇒

¬(siskNor ∧ king¬(kNor ∧ kAlb))

a′:
[

siskNor
]
⇒

¬(brokAlb ∧ king¬(kNor ∧ kAlb))

back

58/86

Let E ∈ sem(K,Att).

Definition

logical closure. For all ψ ∈ Cn({ϕ | Γ ⇒ ϕ ∈ E}) there is a Γ ⇒ ψ ∈ E .

Theorem 6

Let K be a knowledge base.
1. Stable semantics satisfies non-interference, consistency and logical

closure for Att ∈
{
{DirectDefeat, ConsistencyDefeat}, {DirectDefeat}

}
.

2. Grounded semantics satisfies non-interference, consistency and
logical closure for Att ∈

{
{DirectDefeat, ConsistencyDefeat}, {Defeat}

}
.

So, we found some good combos! :-)

59/86

Let E ∈ sem(K,Att).

Definition

logical closure. For all ψ ∈ Cn({ϕ | Γ ⇒ ϕ ∈ E}) there is a Γ ⇒ ψ ∈ E .

Theorem 7

Let K be a knowledge base.
1. Stable semantics satisfies non-interference, consistency and logical

closure for Att ∈
{
{DirectDefeat, ConsistencyDefeat}, {DirectDefeat}

}
.

2. Grounded semantics satisfies non-interference, consistency and
logical closure for Att ∈

{
{DirectDefeat, ConsistencyDefeat}, {Defeat}

}
.

So, we found some good combos! :-)

59/86

Let E ∈ sem(K,Att).

Definition

logical closure. For all ψ ∈ Cn({ϕ | Γ ⇒ ϕ ∈ E}) there is a Γ ⇒ ψ ∈ E .

Theorem 8

Let K be a knowledge base.
1. Stable semantics satisfies non-interference, consistency and logical

closure for Att ∈
{
{DirectDefeat, ConsistencyDefeat}, {DirectDefeat}

}
.

2. Grounded semantics satisfies non-interference, consistency and
logical closure for Att ∈

{
{DirectDefeat, ConsistencyDefeat}, {Defeat}

}
.

So, we found some good combos! :-)

59/86

Semantic collapse

complete
MEnaive

ME
grounded

SE
ideal
SE

preferred
ME

stage
ME semi-stable

ME
stable

ME

eager
SE

∩

Solid arrows: general logical relations. Dashed arrows: additional logical relations
in sequent-based argumentation where Att = {DirDef, ConDef}. [2] 60/86

MCS representation

It speaks in favor of a given KRR-method’s transparency if it coheres with
perspectives provided by other KRR-methods.

How does our argumentation-based method fair in this respect?

61/86

MCS representation

It speaks in favor of a given KRR-method’s transparency if it coheres with
perspectives provided by other KRR-methods.

How does our argumentation-based method fair in this respect?

61/86

Definition

Let K = ⟨As,Ad⟩ be a knowledge base and A ⊆ Ad.
A is maximally consistent in K iff

1. A ∪As is (classically) consistent and
2. there is no A′ such that A ⊊ A′ ⊆ Ad and A′ ∪ As is consistent.

We let maxcon(K) be the set of all maximal consistent set of defeasible
assumptions in K.

Let us go back to our knowledge base K = ⟨As,Ad⟩ with

As =
{

sis (Nor), bro (Alb), king¬((Nor) ∨ (Alb))
}

Ad =
{

agentϕ | ϕ ∈ L
}

What are the maximally consistent sets for K? How many are there?

62/86

Definition

Let K = ⟨As,Ad⟩ be a knowledge base and A ⊆ Ad.
A is maximally consistent in K iff
1. A ∪As is (classically) consistent and

2. there is no A′ such that A ⊊ A′ ⊆ Ad and A′ ∪ As is consistent.
We let maxcon(K) be the set of all maximal consistent set of defeasible
assumptions in K.

Let us go back to our knowledge base K = ⟨As,Ad⟩ with

As =
{

sis (Nor), bro (Alb), king¬((Nor) ∨ (Alb))
}

Ad =
{

agentϕ | ϕ ∈ L
}

What are the maximally consistent sets for K? How many are there?

62/86

Definition

Let K = ⟨As,Ad⟩ be a knowledge base and A ⊆ Ad.
A is maximally consistent in K iff
1. A ∪As is (classically) consistent and
2. there is no A′ such that A ⊊ A′ ⊆ Ad and A′ ∪ As is consistent.

We let maxcon(K) be the set of all maximal consistent set of defeasible
assumptions in K.

Let us go back to our knowledge base K = ⟨As,Ad⟩ with

As =
{

sis (Nor), bro (Alb), king¬((Nor) ∨ (Alb))
}

Ad =
{

agentϕ | ϕ ∈ L
}

What are the maximally consistent sets for K? How many are there?

62/86

Definition

Let K = ⟨As,Ad⟩ be a knowledge base and A ⊆ Ad.
A is maximally consistent in K iff
1. A ∪As is (classically) consistent and
2. there is no A′ such that A ⊊ A′ ⊆ Ad and A′ ∪ As is consistent.

We let maxcon(K) be the set of all maximal consistent set of defeasible
assumptions in K.

Let us go back to our knowledge base K = ⟨As,Ad⟩ with

As =
{

sis (Nor), bro (Alb), king¬((Nor) ∨ (Alb))
}

Ad =
{

agentϕ | ϕ ∈ L
}

What are the maximally consistent sets for K? How many are there?

62/86

Definition

Let K = ⟨As,Ad⟩ be a knowledge base and A ⊆ Ad.
A is maximally consistent in K iff
1. A ∪As is (classically) consistent and
2. there is no A′ such that A ⊊ A′ ⊆ Ad and A′ ∪ As is consistent.

We let maxcon(K) be the set of all maximal consistent set of defeasible
assumptions in K.

Let us go back to our knowledge base K = ⟨As,Ad⟩ with

As =
{

sis (Nor), bro (Alb), king¬((Nor) ∨ (Alb))
}

Ad =
{

agentϕ | ϕ ∈ L
}

What are the maximally consistent sets for K? How many are there? 62/86

maxcon(K) consists of:

M1 = Ad \ { king¬((Nor) ∧ (Alb))},

M2 = Ad \ { sis (Nor)},
and M3 = Ad \ { bro (Alb)}

Let us compare this to our stable extensions when working with direct defeat. AF

Hm, … it looks suspiciously as if the stable sets coincide with the maxicon sets!

63/86

maxcon(K) consists of:

M1 = Ad \ { king¬((Nor) ∧ (Alb))},

M2 = Ad \ { sis (Nor)},
and M3 = Ad \ { bro (Alb)}

Let us compare this to our stable extensions when working with direct defeat. AF

Hm, … it looks suspiciously as if the stable sets coincide with the maxicon sets!

63/86

And indeed … when working with direct defeats we have:

Theorem 9

Let K be a knowledge base and Att ∈ {{direct defeat},
{direct defeat, consistency defeat}}. Then,

stable(K,Att) = {Arg(M) | M ∈ maxcon(K)}.

Similar results relative to variants of default logic and constrained input/output
logic can be obtained when incorporating default rules in the knowledge base!
(See talk next week!)

64/86

And indeed … when working with direct defeats we have:

Theorem 10

Let K be a knowledge base and Att ∈ {{direct defeat},
{direct defeat, consistency defeat}}. Then,

stable(K,Att) = {Arg(M) | M ∈ maxcon(K)}.

Similar results relative to variants of default logic and constrained input/output
logic can be obtained when incorporating default rules in the knowledge base!
(See talk next week!)

64/86

Small exercise

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What are the maximal consistent subsets of K?
2. How do the stable extensions look like for Att = {direct defeat}?

1. The maximal consistent subsets are M1 = {p ∧ q, s} and
M2 = {¬p ∧ q, s}.

2. The stable extensions are Arg(M1) and Arg(M2).

65/86

Small exercise

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What are the maximal consistent subsets of K?

2. How do the stable extensions look like for Att = {direct defeat}?

1. The maximal consistent subsets are M1 = {p ∧ q, s} and
M2 = {¬p ∧ q, s}.

2. The stable extensions are Arg(M1) and Arg(M2).

65/86

Small exercise

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What are the maximal consistent subsets of K?
2. How do the stable extensions look like for Att = {direct defeat}?

1. The maximal consistent subsets are M1 = {p ∧ q, s} and
M2 = {¬p ∧ q, s}.

2. The stable extensions are Arg(M1) and Arg(M2).

65/86

Small exercise

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What are the maximal consistent subsets of K?
2. How do the stable extensions look like for Att = {direct defeat}?

1. The maximal consistent subsets are M1 = {p ∧ q, s} and
M2 = {¬p ∧ q, s}.

2. The stable extensions are Arg(M1) and Arg(M2).

65/86

Small exercise

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What are the maximal consistent subsets of K?
2. How do the stable extensions look like for Att = {direct defeat}?

1. The maximal consistent subsets are M1 = {p ∧ q, s} and
M2 = {¬p ∧ q, s}.

2. The stable extensions are Arg(M1) and Arg(M2).
65/86

Can we find something similar for grounded semantics?

66/86

Theorem 11

Let K be a knowledge base, free(K) =
∩
maxcon(K) and Att ∈{

{direct defeat, consistency defeat}, {defeat}
}
.

Then,
grounded(K,Att) = {Arg(free(K))}.

67/86

Back to our little exercise …

67/86

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What is the set free(K1)?

2. What is the grounded extension for
Att

{
{direct defeat, consistency defeat}, {defeat}

}
?

3. What would change for K2 = ⟨∅, {p,q,¬p, s}⟩?

1. free(K) = {s}
2. grounded(K,Att) = {Arg({s})}.
3. free(K2) = {s,g} and grounded(K,Att) = {Arg({q, s})}.

68/86

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What is the set free(K1)?
2. What is the grounded extension for

Att
{
{direct defeat, consistency defeat}, {defeat}

}
?

3. What would change for K2 = ⟨∅, {p,q,¬p, s}⟩?

1. free(K) = {s}
2. grounded(K,Att) = {Arg({s})}.
3. free(K2) = {s,g} and grounded(K,Att) = {Arg({q, s})}.

68/86

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What is the set free(K1)?
2. What is the grounded extension for

Att
{
{direct defeat, consistency defeat}, {defeat}

}
?

3. What would change for K2 = ⟨∅, {p,q,¬p, s}⟩?

1. free(K) = {s}
2. grounded(K,Att) = {Arg({s})}.
3. free(K2) = {s,g} and grounded(K,Att) = {Arg({q, s})}.

68/86

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What is the set free(K1)?
2. What is the grounded extension for

Att
{
{direct defeat, consistency defeat}, {defeat}

}
?

3. What would change for K2 = ⟨∅, {p,q,¬p, s}⟩?

1. free(K) = {s}

2. grounded(K,Att) = {Arg({s})}.
3. free(K2) = {s,g} and grounded(K,Att) = {Arg({q, s})}.

68/86

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What is the set free(K1)?
2. What is the grounded extension for

Att
{
{direct defeat, consistency defeat}, {defeat}

}
?

3. What would change for K2 = ⟨∅, {p,q,¬p, s}⟩?

1. free(K) = {s}
2. grounded(K,Att) = {Arg({s})}.

3. free(K2) = {s,g} and grounded(K,Att) = {Arg({q, s})}.

68/86

Suppose our knowledge base is K1 = ⟨As,Ad⟩ with

• As = ∅ and
• Ad = {p ∧ q,¬p ∧ q, s}

1. What is the set free(K1)?
2. What is the grounded extension for

Att
{
{direct defeat, consistency defeat}, {defeat}

}
?

3. What would change for K2 = ⟨∅, {p,q,¬p, s}⟩?

1. free(K) = {s}
2. grounded(K,Att) = {Arg({s})}.
3. free(K2) = {s,g} and grounded(K,Att) = {Arg({q, s})}.

68/86

What about consequence relations? Are there similar
representational results?

68/86

Definition

skept., shared arguments. K |∼Att,sem
∩arg ϕ iff ∃Γ ⇒ ϕ ∈

∩
sem(K,Att).

skept., shared conclusions. K |∼Att,sem
∩con ϕ iff ∀E ∈ sem(K,Att)(∃Γ ⇒ ϕ ∈ E).

credulous. K |∼Att,sem
∪ ϕ iff ∃E ∈ sem(K,Att)(∃Γ ⇒ ϕ ∈ E).

Theorem 12

1. Where sem ∈ {stable} and Att ∈ {AttDir,AttDirCon}:

K |∼Att,sem
∩con ϕ iff ϕ ∈

∩
M∈maxcon(K) Cn(M∪As)

2. Where sem ∈ {stable} and Att ∈ {AttDir,AttDirCon}:

K |∼Att,sem
∩arg ϕ iff ϕ ∈ Cn(

∩
maxcon(K) ∪ As)

3. Where ⋆ ∈ {∩con,∩arg} and Att ∈ {AttDef,AttDirCon}:

K |∼Att,grounded
⋆ ϕ iff ϕ ∈ Cn(

∩
maxcon(K) ∪ As).

69/86

Definition

skept., shared arguments. K |∼Att,sem
∩arg ϕ iff ∃Γ ⇒ ϕ ∈

∩
sem(K,Att).

skept., shared conclusions. K |∼Att,sem
∩con ϕ iff ∀E ∈ sem(K,Att)(∃Γ ⇒ ϕ ∈ E).

credulous. K |∼Att,sem
∪ ϕ iff ∃E ∈ sem(K,Att)(∃Γ ⇒ ϕ ∈ E).

Theorem 13

1. Where sem ∈ {stable} and Att ∈ {AttDir,AttDirCon}:

K |∼Att,sem
∩con ϕ iff ϕ ∈

∩
M∈maxcon(K) Cn(M∪As)

2. Where sem ∈ {stable} and Att ∈ {AttDir,AttDirCon}:

K |∼Att,sem
∩arg ϕ iff ϕ ∈ Cn(

∩
maxcon(K) ∪ As)

3. Where ⋆ ∈ {∩con,∩arg} and Att ∈ {AttDef,AttDirCon}:

K |∼Att,grounded
⋆ ϕ iff ϕ ∈ Cn(

∩
maxcon(K) ∪ As).

69/86

Definition

skept., shared arguments. K |∼Att,sem
∩arg ϕ iff ∃Γ ⇒ ϕ ∈

∩
sem(K,Att).

skept., shared conclusions. K |∼Att,sem
∩con ϕ iff ∀E ∈ sem(K,Att)(∃Γ ⇒ ϕ ∈ E).

credulous. K |∼Att,sem
∪ ϕ iff ∃E ∈ sem(K,Att)(∃Γ ⇒ ϕ ∈ E).

Theorem 14

1. Where sem ∈ {stable} and Att ∈ {AttDir,AttDirCon}:

K |∼Att,sem
∩con ϕ iff ϕ ∈

∩
M∈maxcon(K) Cn(M∪As)

2. Where sem ∈ {stable} and Att ∈ {AttDir,AttDirCon}:

K |∼Att,sem
∩arg ϕ iff ϕ ∈ Cn(

∩
maxcon(K) ∪ As)

3. Where ⋆ ∈ {∩con,∩arg} and Att ∈ {AttDef,AttDirCon}:

K |∼Att,grounded
⋆ ϕ iff ϕ ∈ Cn(

∩
maxcon(K) ∪ As).

69/86

Definition

skept., shared arguments. K |∼Att,sem
∩arg ϕ iff ∃Γ ⇒ ϕ ∈

∩
sem(K,Att).

skept., shared conclusions. K |∼Att,sem
∩con ϕ iff ∀E ∈ sem(K,Att)(∃Γ ⇒ ϕ ∈ E).

credulous. K |∼Att,sem
∪ ϕ iff ∃E ∈ sem(K,Att)(∃Γ ⇒ ϕ ∈ E).

Theorem 15

1. Where sem ∈ {stable} and Att ∈ {AttDir,AttDirCon}:

K |∼Att,sem
∩con ϕ iff ϕ ∈

∩
M∈maxcon(K) Cn(M∪As)

2. Where sem ∈ {stable} and Att ∈ {AttDir,AttDirCon}:

K |∼Att,sem
∩arg ϕ iff ϕ ∈ Cn(

∩
maxcon(K) ∪ As)

3. Where ⋆ ∈ {∩con,∩arg} and Att ∈ {AttDef,AttDirCon}:

K |∼Att,grounded
⋆ ϕ iff ϕ ∈ Cn(

∩
maxcon(K) ∪ As).

69/86

Cumulativity

Nonmonotonic consequence relations are non-robust: adding information
to a knowledge base may destroy consequences.

Can we identify some type of information that, if added to the knowledge
base, does not lead to the loss of consequences? Ideas?

Notation: let K⊕ ϕ ∈ {⟨As ∪ {ϕ},As⟩, ⟨As,Ad ∪ {ϕ}⟩}.

Definition

cautious monotony. |∼ is cautious monotonic if the following holds: if
K |∼ϕ and K |∼ψ, then K⊕ ϕ |∼ψ.

70/86

Cumulativity

Nonmonotonic consequence relations are non-robust: adding information
to a knowledge base may destroy consequences.

Can we identify some type of information that, if added to the knowledge
base, does not lead to the loss of consequences? Ideas?

Notation: let K⊕ ϕ ∈ {⟨As ∪ {ϕ},As⟩, ⟨As,Ad ∪ {ϕ}⟩}.

Definition

cautious monotony. |∼ is cautious monotonic if the following holds: if
K |∼ϕ and K |∼ψ, then K⊕ ϕ |∼ψ.

70/86

Cumulativity

Nonmonotonic consequence relations are non-robust: adding information
to a knowledge base may destroy consequences.

Can we identify some type of information that, if added to the knowledge
base, does not lead to the loss of consequences? Ideas?

Notation: let K⊕ ϕ ∈ {⟨As ∪ {ϕ},As⟩, ⟨As,Ad ∪ {ϕ}⟩}.

Definition

cautious monotony. |∼ is cautious monotonic if the following holds: if
K |∼ϕ and K |∼ψ, then K⊕ ϕ |∼ψ. 70/86

Let K⊕ ϕ ∈ {⟨As ∪ {ϕ},As⟩, ⟨As,Ad ∪ {ϕ}⟩}.

Definition

cautious monotony. |∼ is cautious monotonic if the following holds:
whenever K |∼ϕ and K |∼ψ then K⊕ ϕ |∼ψ.

A similar property is

Definition

cautious cut. |∼ satisfies cautious cut if the following holds: if K |∼ϕ and
K⊕ ϕ |∼ψ, then K |∼ψ.

Putting things together

Definition

cumulativity. |∼ is cumulative iff it satisfies cautious monotony and
cautious cut.

Adding |∼-consequences does neither reduce nor increase the consequence
set!

71/86

Let K⊕ ϕ ∈ {⟨As ∪ {ϕ},As⟩, ⟨As,Ad ∪ {ϕ}⟩}.

Definition

cautious monotony. |∼ is cautious monotonic if the following holds:
whenever K |∼ϕ and K |∼ψ then K⊕ ϕ |∼ψ.

A similar property is

Definition

cautious cut. |∼ satisfies cautious cut if the following holds: if K |∼ϕ and
K⊕ ϕ |∼ψ, then K |∼ψ.

Putting things together

Definition

cumulativity. |∼ is cumulative iff it satisfies cautious monotony and
cautious cut.

Adding |∼-consequences does neither reduce nor increase the consequence
set!

71/86

Let K⊕ ϕ ∈ {⟨As ∪ {ϕ},As⟩, ⟨As,Ad ∪ {ϕ}⟩}.

Definition

cautious monotony. |∼ is cautious monotonic if the following holds:
whenever K |∼ϕ and K |∼ψ then K⊕ ϕ |∼ψ.

A similar property is

Definition

cautious cut. |∼ satisfies cautious cut if the following holds: if K |∼ϕ and
K⊕ ϕ |∼ψ, then K |∼ψ.

Putting things together

Definition

cumulativity. |∼ is cumulative iff it satisfies cautious monotony and
cautious cut.

Adding |∼-consequences does neither reduce nor increase the consequence
set!

71/86

Result

Theorem 16

All consequence relations from Theorem 15 are cumulative.

72/86

Result

Theorem 17

All consequence relations from Theorem 15 are cumulative.

72/86

Disjunctive Reasoning

Definition

(OR). If K⊕ γ |∼ϕ and K⊕ δ |∼ϕ then K⊕ (γ ∨ δ) |∼ϕ.

Consider K = ⟨As : ∅,Ad⟩ with Ad = {¬p,¬p ⊃ r,¬q,¬q ⊃ r}.

• What are the maxicon sets when adding p to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg ?

• Does r follow when we add q to the strict (or defeasible) assumptions?
• What are the maxicon sets when adding p ∨ q to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg under this addition?

73/86

Disjunctive Reasoning

Definition

(OR). If K⊕ γ |∼ϕ and K⊕ δ |∼ϕ then K⊕ (γ ∨ δ) |∼ϕ.

Consider K = ⟨As : ∅,Ad⟩ with Ad = {¬p,¬p ⊃ r,¬q,¬q ⊃ r}.

• What are the maxicon sets when adding p to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg ?

• Does r follow when we add q to the strict (or defeasible) assumptions?
• What are the maxicon sets when adding p ∨ q to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg under this addition?

73/86

Disjunctive Reasoning

Definition

(OR). If K⊕ γ |∼ϕ and K⊕ δ |∼ϕ then K⊕ (γ ∨ δ) |∼ϕ.

Consider K = ⟨As : ∅,Ad⟩ with Ad = {¬p,¬p ⊃ r,¬q,¬q ⊃ r}.

• What are the maxicon sets when adding p to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg ?

• Does r follow when we add q to the strict (or defeasible) assumptions?
• What are the maxicon sets when adding p ∨ q to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg under this addition?

73/86

Disjunctive Reasoning

Definition

(OR). If K⊕ γ |∼ϕ and K⊕ δ |∼ϕ then K⊕ (γ ∨ δ) |∼ϕ.

Consider K = ⟨As : ∅,Ad⟩ with Ad = {¬p,¬p ⊃ r,¬q,¬q ⊃ r}.

• What are the maxicon sets when adding p to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg ?

• Does r follow when we add q to the strict (or defeasible) assumptions?

• What are the maxicon sets when adding p ∨ q to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg under this addition?

73/86

Disjunctive Reasoning

Definition

(OR). If K⊕ γ |∼ϕ and K⊕ δ |∼ϕ then K⊕ (γ ∨ δ) |∼ϕ.

Consider K = ⟨As : ∅,Ad⟩ with Ad = {¬p,¬p ⊃ r,¬q,¬q ⊃ r}.

• What are the maxicon sets when adding p to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg ?

• Does r follow when we add q to the strict (or defeasible) assumptions?
• What are the maxicon sets when adding p ∨ q to the strict (or defeasible)
assumptions?

• Does r follow via |∼stable
∩arg under this addition?

73/86

Disjunctive reasoning under shared conclusions

Theorem 18

|∼stable
∩con satisfies OR where Att ∈ {{DirDef}, {DirDef, ConDef}.

74/86

Going beyond classical logic?

74/86

The presented results generalize to base logics that satisfy ([2]):2

• Simple ’reflexive’ arguments: ϕ⇒ ϕ is an argument

• Chaining of arguments:
Γ1 ⇒ ψ,Π1 Γ2, ψ ⇒ ∆

Γ1, Γ2 ⇒ Π1,∆

• Contraposition:
Γ ⇒ Π, ψ

¬ϕ, Γ ⇒ Π

ψ, Γ ⇒ Π

Γ ⇒ Π,¬ϕ

• Conjunction has its usual meaning:
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆

Γ1 ⇒ Π1, ϕ Γ2 ⇒ Π2, ψ

Γ1, Γ2 ⇒ Π1,Π2, ϕ ∧ ψ

• Argument construction is monotonic (attack take care of defeat):
Γ ⇒ ∆

Γ, ϕ⇒ ∆
Γ ⇒ Π

Γ ⇒ Π, ϕ

2In case that C is single-conclusion, thus sequents may have at most one formula in their
right-hand sides, Π, Π1 and Π2 should be empty, and ∆ contains at most one formula.

75/86

The presented results generalize to base logics that satisfy ([2]):2

• Simple ’reflexive’ arguments: ϕ⇒ ϕ is an argument
• Chaining of arguments:

Γ1 ⇒ ψ,Π1 Γ2, ψ ⇒ ∆

Γ1, Γ2 ⇒ Π1,∆

• Contraposition:
Γ ⇒ Π, ψ

¬ϕ, Γ ⇒ Π

ψ, Γ ⇒ Π

Γ ⇒ Π,¬ϕ

• Conjunction has its usual meaning:
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆

Γ1 ⇒ Π1, ϕ Γ2 ⇒ Π2, ψ

Γ1, Γ2 ⇒ Π1,Π2, ϕ ∧ ψ

• Argument construction is monotonic (attack take care of defeat):
Γ ⇒ ∆

Γ, ϕ⇒ ∆
Γ ⇒ Π

Γ ⇒ Π, ϕ

2In case that C is single-conclusion, thus sequents may have at most one formula in their
right-hand sides, Π, Π1 and Π2 should be empty, and ∆ contains at most one formula.

75/86

The presented results generalize to base logics that satisfy ([2]):2

• Simple ’reflexive’ arguments: ϕ⇒ ϕ is an argument
• Chaining of arguments:

Γ1 ⇒ ψ,Π1 Γ2, ψ ⇒ ∆

Γ1, Γ2 ⇒ Π1,∆

• Contraposition:
Γ ⇒ Π, ψ

¬ϕ, Γ ⇒ Π

ψ, Γ ⇒ Π

Γ ⇒ Π,¬ϕ

• Conjunction has its usual meaning:
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆

Γ1 ⇒ Π1, ϕ Γ2 ⇒ Π2, ψ

Γ1, Γ2 ⇒ Π1,Π2, ϕ ∧ ψ

• Argument construction is monotonic (attack take care of defeat):
Γ ⇒ ∆

Γ, ϕ⇒ ∆
Γ ⇒ Π

Γ ⇒ Π, ϕ

2In case that C is single-conclusion, thus sequents may have at most one formula in their
right-hand sides, Π, Π1 and Π2 should be empty, and ∆ contains at most one formula.

75/86

The presented results generalize to base logics that satisfy ([2]):2

• Simple ’reflexive’ arguments: ϕ⇒ ϕ is an argument
• Chaining of arguments:

Γ1 ⇒ ψ,Π1 Γ2, ψ ⇒ ∆

Γ1, Γ2 ⇒ Π1,∆

• Contraposition:
Γ ⇒ Π, ψ

¬ϕ, Γ ⇒ Π

ψ, Γ ⇒ Π

Γ ⇒ Π,¬ϕ

• Conjunction has its usual meaning:
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆

Γ1 ⇒ Π1, ϕ Γ2 ⇒ Π2, ψ

Γ1, Γ2 ⇒ Π1,Π2, ϕ ∧ ψ

• Argument construction is monotonic (attack take care of defeat):
Γ ⇒ ∆

Γ, ϕ⇒ ∆
Γ ⇒ Π

Γ ⇒ Π, ϕ

2In case that C is single-conclusion, thus sequents may have at most one formula in their
right-hand sides, Π, Π1 and Π2 should be empty, and ∆ contains at most one formula.

75/86

The presented results generalize to base logics that satisfy ([2]):2

• Simple ’reflexive’ arguments: ϕ⇒ ϕ is an argument
• Chaining of arguments:

Γ1 ⇒ ψ,Π1 Γ2, ψ ⇒ ∆

Γ1, Γ2 ⇒ Π1,∆

• Contraposition:
Γ ⇒ Π, ψ

¬ϕ, Γ ⇒ Π

ψ, Γ ⇒ Π

Γ ⇒ Π,¬ϕ

• Conjunction has its usual meaning:
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆

Γ1 ⇒ Π1, ϕ Γ2 ⇒ Π2, ψ

Γ1, Γ2 ⇒ Π1,Π2, ϕ ∧ ψ

• Argument construction is monotonic (attack take care of defeat):
Γ ⇒ ∆

Γ, ϕ⇒ ∆
Γ ⇒ Π

Γ ⇒ Π, ϕ
2In case that C is single-conclusion, thus sequents may have at most one formula in their
right-hand sides, Π, Π1 and Π2 should be empty, and ∆ contains at most one formula.

75/86

Other Logics (WiP): Bochvar

• Let Γ be consistent. Then Γ ⊢B3 ϕ iff Γ ⊢CL ϕ and Atoms(ϕ) ⊆ Atoms(Γ).
• So:

• p ∧ q ⊢B3 p
• p ∨ q,¬p ⊢B3 q
• p ⊬B3 p ∨ q
• The logic ’stays on topic’.

Definition

Reductio Attacks are defined as follows: (Γ,¬ϕ) directly reductio-attacks
(Γ′ ∪ {ϕ′}, ψ) if (ϕ′, ϕ) ∈ Arg.

76/86

Other Logics (WiP): Bochvar

• Let Γ be consistent. Then Γ ⊢B3 ϕ iff Γ ⊢CL ϕ and Atoms(ϕ) ⊆ Atoms(Γ).
• So:

• p ∧ q ⊢B3 p
• p ∨ q,¬p ⊢B3 q
• p ⊬B3 p ∨ q
• The logic ’stays on topic’.

Definition

Reductio Attacks are defined as follows: (Γ,¬ϕ) directly reductio-attacks
(Γ′ ∪ {ϕ′}, ψ) if (ϕ′, ϕ) ∈ Arg.

76/86

Translation

1. Where E ⊆ ArgCL(K) let E↓ = E ∩ ArgB3(K).
2. Where E ⊆ ArgB3(K) let E↑ = {(Γ, ϕ) | (Γ, ϕ′) ∈ E and ϕ′ ⊢CL ϕ}.

Theorem 19

Let AF and AF′ be based on the knowledge base K. In case of AF the under-
lying logic is CL and the underlying attack is direct defeat, while in the case
of AF′ it is B3 and direct reductio. Then,
1. For each E ∈ stable(AF), E↑ ∈ stable(AF′).
2. For each E ∈ stable(AF′), E↓ ∈ stable(AF).

So: S |∼∩stable
CL ϕ iff ϕ ∈ CnCL({ψ | S |∼stable

B ψ}).

77/86

References

Here we only scratched the surface of the meta-theory of sequent-based
argumentation. For a rather deep dive into this topic check out the recent:

• Arieli, Ofer, Borg, AnneMarie, & Straßer, Christian (2023). A postulate-deriven
study of logical argumentation. Artificial Intelligence. [2]

• Arieli, O., & Christian Straßer (2015). Sequent-Based Logical Argumentation.
Argument and Computation., 6(1), 73–99. [4]

For a more general overview on logical argumentation and its meta-theory see:

• Arieli, O., Borg, A., Heyninck, J., & Straßer, C. (2021). Logic-based approaches to
formal argumentation. Journal of Applied Logics-IfCoLog Journal, 8(6),
1793–1898. [6]

78/86

More references

Applications of sequent-based argumention:

• normative reasoning [16, 8]
• explanations [5]
• automated proofs [3, 1]
• probabilistic reasoning, cognition [17]

79/86

Bibliography i

References

[1] Ofer Arieli, Kees van Berkel, and Christian Straßer. “Annotated Sequent
Calculi for Paraconsistent Reasoning and Their Relations to Logical
Argumentation”. In: Proceedings of IJCAI 2022. 2022, pp. 2532–2538.

[2] Ofer Arieli, AnneMarie Borg, and Christian Straßer. “A Postulate-Deriven
Study of Logical Argumentation”. In: Artificial Intelligence (2023), p. 103966.

80/86

Bibliography ii

[3] Ofer Arieli and Christian Straßer. “Logical argumentation by dynamic proof
systems”. In: Theoretical Computer Science 781 (2019). Logical and Semantic
Frameworks with Applications, pp. 63–91. ISSN: 0304-3975. DOI:
https://doi.org/10.1016/j.tcs.2019.02.019. URL:
http://www.sciencedirect.com/science/article/pii/S0304397519301252.

[4] Ofer Arieli and Christian Straßer. “Sequent-Based Logical Argumentation”.
In: Argument and Computation. 6.1 (2015), pp. 73–99.

[5] Ofer Arieli et al. “Explainable Logic-Based Argumentation”. In: Computational
Models of Argument. IOS Press, 2022, pp. 32–43.

81/86

https://doi.org/https://doi.org/10.1016/j.tcs.2019.02.019
http://www.sciencedirect.com/science/article/pii/S0304397519301252

Bibliography iii

[6] Ofer Arieli et al. “Logic-based approaches to formal argumentation”. In:
Journal of Applied Logics-IfCoLog Journal 8.6 (2021), pp. 1793–1898.

[7] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. “Abstract
argumentation frameworks and their semantics”. In: Handbook of formal
argumentation 1 (2018), pp. 157–234.

[8] Kees van Berkel and Christian Straßer. “Reasoning With and About Norms in
Logical Argumentation”. In: Frontiers in Artificial Intelligence and Applications:
Computational Models of Argument, proceedings (COMMA22). Ed. by Francesca Toni
et al. Vol. 353. IOS press, 2022, pp. 332–343. DOI: 10.3233/FAIA220164.

82/86

https://doi.org/10.3233/FAIA220164

Bibliography iv

[9] AnneMarie Borg and Christian Straßer. “Relevance in Structured
Argumentation”. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (2018), pp. 1753–1759. DOI:
10.24963/ijcai.2018/242.

[10] Phan Minh Dung. “On the Acceptability of Arguments and its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games”. In: Artifical Intelligence 77 (1995), pp. 321–358.

[11] Michael Gelfond and Vladimir Lifschitz. “The stable model semantics for
logic programming.”. In: ICLP/SLP. Vol. 88. 1988, pp. 1070–1080.

83/86

https://doi.org/10.24963/ijcai.2018/242

Bibliography v

[12] David Makinson. Bridges from Classical to Nonmonotonic Logic. Vol. 5. Texts
in Computing. London: King’s College Publications, 2005.

[13] Sanjay Modgil and Henry Prakken. “A general account of argumentation
with preferences”. In: Artificial Intelligence 195 (2013), pp. 361–397.

[14] Pere Pardo and Christian Straßer. “Modular Orders on Defaults in Formal
Argumentation”. In: Journal of Logic and Computation nil.nil (2022), nil. DOI:
10.1093/logcom/exac084. URL: http://dx.doi.org/10.1093/logcom/exac084.

[15] Raymond Reiter. “A Logic for Default Reasoning”. In: Artifical Intelligence 1–2.13
(1980).

84/86

https://doi.org/10.1093/logcom/exac084
http://dx.doi.org/10.1093/logcom/exac084

Bibliography vi

[16] Christian Straßer and Ofer Arieli. “Normative reasoning by sequent-based
argumentation”. In: Journal of Logic and Computation 29.3 (July 2015), pp. 387–415.
ISSN: 0955-792X. DOI: 10.1093/logcom/exv050. eprint: http:
//oup.prod.sis.lan/logcom/article-pdf/29/3/387/28321903/exv050.pdf. URL:
https://doi.org/10.1093/logcom/exv050.

[17] Christian Straßer and Lisa Michajlova. “Evaluating and Selecting Arguments
in the Context of Higher Order Uncertainty”. In: Frontiers in Artificial
Intelligence 6 (2023). ISSN: 2624-8212. DOI: 10.3389/frai.2023.1133998. URL:
https://www.frontiersin.org/articles/10.3389/frai.2023.1133998.

[18] Stephen E. Toulmin. The Uses of Argument. Cambridge University Press, 1958,
p. 264. ISBN: 0521092302.

85/86

https://doi.org/10.1093/logcom/exv050
http://oup.prod.sis.lan/logcom/article-pdf/29/3/387/28321903/exv050.pdf
http://oup.prod.sis.lan/logcom/article-pdf/29/3/387/28321903/exv050.pdf
https://doi.org/10.1093/logcom/exv050
https://doi.org/10.3389/frai.2023.1133998
https://www.frontiersin.org/articles/10.3389/frai.2023.1133998

Bibliography vii

[19] Y. Wu and M. Podlaszewski. “Implementing Crash-Resistance and
Non-Interference in Logic-Based Argumentation”. In: Journal of Logic and
Computation 25.2 (2014), pp. 303–333. DOI: 10.1093/logcom/exu017. URL:
https://doi.org/10.1093/logcom/exu017.

86/86

https://doi.org/10.1093/logcom/exu017
https://doi.org/10.1093/logcom/exu017

Part 5: Application to
normative reasoning

Part 5: Normative reasoning

Normative reasoning:

▶ Drawing conclusions from and about obligations, prohibitions, permissions, rights, violations...
▶ Important to law, ethics, AI, business protocols, social interaction...

Norms influence everyday decision-making and the way (AI) agents shape their world.

Normative reasoning is highly conflict sensitive:
▶ Charlotte promised her brother to catch him a dragon.
▶ Promises must be kept.

But what if we then learn that “dragons ought to be left in peace”?

Normative reasoning is highly defeasible too!

32 / 93

Part 5: Normative reasoning

Normative reasoning:

▶ Drawing conclusions from and about obligations, prohibitions, permissions, rights, violations...
▶ Important to law, ethics, AI, business protocols, social interaction...

Norms influence everyday decision-making and the way (AI) agents shape their world.

Normative reasoning is highly conflict sensitive:

▶ Charlotte promised her brother to catch him a dragon.
▶ Promises must be kept.

But what if we then learn that “dragons ought to be left in peace”?

Normative reasoning is highly defeasible too!

33 / 93

Part 5: Normative reasoning

Normative reasoning:

▶ Drawing conclusions from and about obligations, prohibitions, permissions, rights, violations...
▶ Important to law, ethics, AI, business protocols, social interaction...

Norms influence everyday decision-making and the way (AI) agents shape their world.

Normative reasoning is highly conflict sensitive:
▶ Charlotte promised her brother to catch him a dragon.
▶ Promises must be kept.

But what if we then learn that “dragons ought to be left in peace”?

Normative reasoning is highly defeasible too!

34 / 93

Part 5: Normative reasoning

Normative reasoning:

▶ Drawing conclusions from and about obligations, prohibitions, permissions, rights, violations...
▶ Important to law, ethics, AI, business protocols, social interaction...

Norms influence everyday decision-making and the way (AI) agents shape their world.

Normative reasoning is highly conflict sensitive:
▶ Charlotte promised her brother to catch him a dragon.
▶ Promises must be kept.

But what if we then learn that “dragons ought to be left in peace”?

Normative reasoning is highly defeasible too!

35 / 93

Part 5: Normative reasoning

Normative reasoning:

▶ Drawing conclusions from and about obligations, prohibitions, permissions, rights, violations...
▶ Important to law, ethics, AI, business protocols, social interaction...

Norms influence everyday decision-making and the way (AI) agents shape their world.

Normative reasoning is highly conflict sensitive:
▶ Charlotte promised her brother to catch him a dragon.
▶ Promises must be kept.

But what if we then learn that “dragons ought to be left in peace”?

Normative reasoning is highly defeasible too!

36 / 93

Part 5: Normative reasoning

Some more examples:

Violation reasoning (business policy):

▶ Private information must not be disclosed. If nevertheless disclosed, a correction procedure
must be initiated.

Exception reasoning (traffic law):

▶ You ought to drive on the right. When you overtake another vehicle you ought to drive on the
left.

Dilemmas (medical ethics):

▶ Should an organ be given to 90-year old who is first on a donor waiting list, or to a teenager
who needs it now?

Conflict resolution mechanisms have been developed for such scenarios.
37 / 93

Part 5: Deontic logic

Deontic logic: formal field that deals with normative reasoning.1

▶ Around since the 1950s (von Wright)
▶ Traditionally: monotonic modal logics:

O is a modality for ‘It ought to be that’

‘O(promise)’ for ‘It ought to be that Charlotte keeps her promise’

Developments in computer science led to nonmonotonic deontic logics:

▶ Often non-modal logic.
▶ Input/Output logic (Makinson and van der Torre, 2001) This tutorial!

1Greek word déon refers to ‘that which is binding’: duty.
38 / 93

Part 5: Deontic logic

Problem: Deontic logics show that an obligation holds, but don’t show how conflicts
are addressed.

Main goals of Part 5 (based on van Berkel and Strasser, 2022):

1 Adopt a proof calculus that generates deontic (counter-)arguments
2 Use of formal argumentation to transparently characterize conflict resolution in defeasible

normative reasoning.

Argumentation serves explainability due to its closeness to human reasoning (Mercier and Sperber,
2011).

39 / 93

Part 5: Proof calculus

The formal language:

1 Using labelled versions of a propositional language:

ϕf = ‘ϕ is a fact.’

ϕo = ‘ϕ is obligatory.’

ϕc = ‘ϕ is constraint with which obligations must be consistent.’

The language makes transparent the various roles formulas play:

promf vs promo

2 Adopting norms as objects of reasoning:

(ϕ, ψ)n and ¬(ϕ, ψ)n

e.g., (prom,hunt)n = ‘If Charlotte promised to, she ought to hunt Albert.’

e.g., ¬(prom,hunt)n = ‘the norm (prom,hunt)n inapplicable.’
40 / 93

Part 5: Proof calculus

The formal language:

1 Using labelled versions of a propositional language:

ϕf = ‘ϕ is a fact.’

ϕo = ‘ϕ is obligatory.’

ϕc = ‘ϕ is constraint with which obligations must be consistent.’

The language makes transparent the various roles formulas play:

promf vs promo

2 Adopting norms as objects of reasoning:

(ϕ, ψ)n and ¬(ϕ, ψ)n

e.g., (prom,hunt)n = ‘If Charlotte promised to, she ought to hunt Albert.’

e.g., ¬(prom,hunt)n = ‘the norm (prom,hunt)n inapplicable.’
41 / 93

Part 5: Proof calculus

The formal language:

1 Using labelled versions of a propositional language:

ϕf = ‘ϕ is a fact.’

ϕo = ‘ϕ is obligatory.’

ϕc = ‘ϕ is constraint with which obligations must be consistent.’

The language makes transparent the various roles formulas play:

promf vs promo

2 Adopting norms as objects of reasoning:

(ϕ, ψ)n and ¬(ϕ, ψ)n

e.g., (prom,hunt)n = ‘If Charlotte promised to, she ought to hunt Albert.’

e.g., ¬(prom,hunt)n = ‘the norm (prom,hunt)n inapplicable.’
42 / 93

Part 5: Proof calculus

The formal language:

1 Using labelled versions of a propositional language:

ϕf = ‘ϕ is a fact.’

ϕo = ‘ϕ is obligatory.’

ϕc = ‘ϕ is constraint with which obligations must be consistent.’

The language makes transparent the various roles formulas play:

promf vs promo

2 Adopting norms as objects of reasoning:

(ϕ, ψ)n and ¬(ϕ, ψ)n

e.g., (prom,hunt)n = ‘If Charlotte promised to, she ought to hunt Albert.’

e.g., ¬(prom,hunt)n = ‘the norm (prom,hunt)n inapplicable.’
43 / 93

Part 5: Proof calculus

The formal language:

1 Using labelled versions of a propositional language:

ϕf = ‘ϕ is a fact.’

ϕo = ‘ϕ is obligatory.’

ϕc = ‘ϕ is constraint with which obligations must be consistent.’

The language makes transparent the various roles formulas play:

promf vs promo

2 Adopting norms as objects of reasoning:

(ϕ, ψ)n and ¬(ϕ, ψ)n

e.g., (prom,hunt)n = ‘If Charlotte promised to, she ought to hunt Albert.’

e.g., ¬(prom,hunt)n = ‘the norm (prom,hunt)n inapplicable.’
44 / 93

Part 5: Proof calculus

The formal language:

1 Using labelled versions of a propositional language:

ϕf = ‘ϕ is a fact.’

ϕo = ‘ϕ is obligatory.’

ϕc = ‘ϕ is constraint with which obligations must be consistent.’

The language makes transparent the various roles formulas play:

promf vs promo

2 Adopting norms as objects of reasoning:

(ϕ, ψ)n and ¬(ϕ, ψ)n

e.g., (prom,hunt)n = ‘If Charlotte promised to, she ought to hunt Albert.’

e.g., ¬(prom,hunt)n = ‘the norm (prom,hunt)n inapplicable.’
45 / 93

Part 5: Proof calculus

A Normative Knowledge Base K = ⟨F ,N , C⟩:

▶ F is the factual context.
▶ N is a normative code.
▶ C are constraints with which inferred obligations must be consistent.

Obligations are not part of the knowledge base: they are derived!

The basic idea (in the spirit of Input/Output Logic):

Obligations
(output)

Facts
(input)

Norm code
+

I/O operation

Constraints

46 / 93

Part 5: Proof calculus

A Normative Knowledge Base K = ⟨F ,N , C⟩:

▶ F is the factual context.
▶ N is a normative code.
▶ C are constraints with which inferred obligations must be consistent.

Obligations are not part of the knowledge base: they are derived!

The basic idea (in the spirit of Input/Output Logic):

Obligations
(output)

Facts
(input)

Norm code
+

I/O operation

Constraints

46 / 93

Part 5: Proof calculus

We are interested in generating two types of arguments:

1 Giving reasons for obligations:

e.g., promf, (prom,hunt)n ⇒ hunto.

2 Giving reasons for norm inapplicability (attackers!):

e.g. promf,¬huntc ⇒ ¬(prom,hunt)n

How are such arguments derived? The calculus!

47 / 93

Part 5: Proof calculus

We are interested in generating two types of arguments:

1 Giving reasons for obligations:

e.g., promf, (prom,hunt)n ⇒ hunto.

2 Giving reasons for norm inapplicability (attackers!):

e.g. promf,¬huntc ⇒ ¬(prom,hunt)n

How are such arguments derived? The calculus!

47 / 93

Part 5: Proof calculus

We are interested in generating two types of arguments:

1 Giving reasons for obligations:

e.g., promf, (prom,hunt)n ⇒ hunto.

2 Giving reasons for norm inapplicability (attackers!):

e.g. promf,¬huntc ⇒ ¬(prom,hunt)n

How are such arguments derived? The calculus!

47 / 93

Part 5: Proof calculus

Proof systems (briefly):

▶ Concern derivability, not satisfiability and validity

▶ Axiomatic systems, sequent calculi, natural deduction, tableaux,...

▶ Proofs are formalized as mathematical objects in their own right

We focus on sequent systems (Gentzen, 1934):

▶ Rule-based proof systems (in contrast to axiomatic systems)
▶ Provides a constructive approach to studying properties of logics
▶ Useful for automated reasoning procedures

48 / 93

Part 5: Proof calculus

A Deontic Argumentation Calculus (DAC):

▶ Rule-based proof system for generating arguments (recall LK):

Γ ⇒ ∆

A DAC-derivation of Γ ⇒ ∆ is a tree-like structure:

1 whose leaves are initial sequents,

2 whose root is Γ ⇒ ∆, and

3 whose rule applications are instances of the calculus’ rules.

Let’s look at the rules.

49 / 93

Part 5: DAC

A Deontic Argumentation Calculus:

Ax
Γi ⇒ ∆i , for i ∈ {f, o, c} and Γi ⇒ ∆i is LK derivable

F-Detach
ϕf, (ϕ, ψ)n ⇒ ψo

ϕf, Γ ⇒ ∆
D-Detach

ϕo, Γ ⇒ ∆

Γ ⇒ ϕo
Cons

Γ, (¬ϕ)c ⇒
Γ, (ϕ, ψ) ⇒

Inapp
Γ ⇒ ¬(ϕ, ψ)n

Γ ⇒ ϕ ϕ, Γ′ ⇒ ∆
Cut

Γ, Γ′ ⇒ ∆

Note: Just one calculus of many! 50 / 93

Part 5: The rules

Ax Taking labelled versions of any LK-derivable arguments Γ ⇒ ∆ as an initial sequents.
! Ax

Γi ⇒ ∆i

F-Detach Introducing initial arguments:
! F-Detach

ϕf, (ϕ, ψ)n ⇒ ψo

which detach obligations from facts and a norm.

Note! F-Detach is a Toulmin argument: premise, warrant, conclusion.

51 / 93

Part 5: The rules

Ax Taking labelled versions of any LK-derivable arguments Γ ⇒ ∆ as an initial sequents.
! Ax

Γi ⇒ ∆i

F-Detach Introducing initial arguments:
! F-Detach

ϕf, (ϕ, ψ)n ⇒ ψo

which detach obligations from facts and a norm.

Note! F-Detach is a Toulmin argument: premise, warrant, conclusion.

52 / 93

Part 5: The rules

D-Detach The rule
ϕf,∆ ⇒ Γ

D-Detach
ϕo,∆ ⇒ Γ

captures deontic detachment:
▶ a norm may likewise be triggered by the output of some other norm.

F-Detach
promf, (prom,hunt)n ⇒ hunto

F-Detach
huntf, (hunt,brave)n ⇒ braveo

D-Detachhunto, (hunt,brave)n ⇒ braveo
Cut

promf, (prom,hunt)n, (hunt,brave)n ⇒ braveo

53 / 93

Part 5: The rules

D-Detach The rule
ϕf,∆ ⇒ Γ

D-Detach
ϕo,∆ ⇒ Γ

captures deontic detachment:
▶ a norm may likewise be triggered by the output of some other norm.

F-Detach
promf, (prom,hunt)n ⇒ hunto

F-Detach
huntf, (hunt,brave)n ⇒ braveo

D-Detachhunto, (hunt,brave)n ⇒ braveo
Cut

promf, (prom,hunt)n, (hunt,brave)n ⇒ braveo

54 / 93

Part 5: The rules

Suppose we have the following norms: (p, q ∨ r)n, (⊤,¬r)n, and (q, z)n.

F-Det
pf, (p, q ∨ r)n ⇒ (q ∨ r)o

F-Det
⊤f, (⊤,¬r)n ⇒ ¬ro Ax

(q ∨ r)o,¬ro ⇒ qo
Cut

(q ∨ r)o,⊤f, (⊤,¬r)n ⇒ qo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n ⇒ qo

F-Det
qf, (q, z)n ⇒ zo

D-Detqo, (q, z)n ⇒ zo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n, (q, z)n ⇒ zo

55 / 93

Part 5: The rules

Suppose we have the following norms: (p, q ∨ r)n, (⊤,¬r)n, and (q, z)n.

F-Det
pf, (p, q ∨ r)n ⇒ (q ∨ r)o

F-Det
⊤f, (⊤,¬r)n ⇒ ¬ro Ax

(q ∨ r)o,¬ro ⇒ qo
Cut

(q ∨ r)o,⊤f, (⊤,¬r)n ⇒ qo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n ⇒ qo

F-Det
qf, (q, z)n ⇒ zo

D-Detqo, (q, z)n ⇒ zo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n, (q, z)n ⇒ zo

56 / 93

Part 5: The rules

Suppose we have the following norms: (p, q ∨ r)n, (⊤,¬r)n, and (q, z)n.

F-Det
pf, (p, q ∨ r)n ⇒ (q ∨ r)o

F-Det
⊤f, (⊤,¬r)n ⇒ ¬ro Ax

(q ∨ r)o,¬ro ⇒ qo
Cut

(q ∨ r)o,⊤f, (⊤,¬r)n ⇒ qo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n ⇒ qo

F-Det
qf, (q, z)n ⇒ zo

D-Detqo, (q, z)n ⇒ zo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n, (q, z)n ⇒ zo

57 / 93

Part 5: The rules

Suppose we have the following norms: (p, q ∨ r)n, (⊤,¬r)n, and (q, z)n.

F-Det
pf, (p, q ∨ r)n ⇒ (q ∨ r)o

F-Det
⊤f, (⊤,¬r)n ⇒ ¬ro Ax

(q ∨ r)o,¬ro ⇒ qo
Cut

(q ∨ r)o,⊤f, (⊤,¬r)n ⇒ qo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n ⇒ qo

F-Det
qf, (q, z)n ⇒ zo

D-Detqo, (q, z)n ⇒ zo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n, (q, z)n ⇒ zo

58 / 93

Part 5: The rules

Suppose we have the following norms: (p, q ∨ r)n, (⊤,¬r)n, and (q, z)n.

F-Det
pf, (p, q ∨ r)n ⇒ (q ∨ r)o

F-Det
⊤f, (⊤,¬r)n ⇒ ¬ro Ax

(q ∨ r)o,¬ro ⇒ qo
Cut

(q ∨ r)o,⊤f, (⊤,¬r)n ⇒ qo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n ⇒ qo

F-Det
qf, (q, z)n ⇒ zo

D-Detqo, (q, z)n ⇒ zo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n, (q, z)n ⇒ zo

59 / 93

Part 5: The rules

Suppose we have the following norms: (p, q ∨ r)n, (⊤,¬r)n, and (q, z)n.

F-Det
pf, (p, q ∨ r)n ⇒ (q ∨ r)o

F-Det
⊤f, (⊤,¬r)n ⇒ ¬ro Ax

(q ∨ r)o,¬ro ⇒ qo
Cut

(q ∨ r)o,⊤f, (⊤,¬r)n ⇒ qo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n ⇒ qo

F-Det
qf, (q, z)n ⇒ zo

D-Detqo, (q, z)n ⇒ zo
Cut

pf,⊤f, (p, q ∨ r)n, (⊤,¬r)n, (q, z)n ⇒ zo

60 / 93

Part 5: The rules

Cons Reasoning with constraints:2

∆ ⇒ ϕo
Cons

∆,¬ϕc ⇒
promf, (prom,hunt)n ⇒ hunto

Cons
promf, (prom,hunt)n,¬huntc ⇒

i.e. promf and (prom,hunt)n (reasons for hunto) are inconsistent with ¬huntc.

Inapp If the reasons are inconsistent, at least one norm is inapplicable!

∆, (ϕ, ψ)n ⇒
Inapp

∆ ⇒ ¬(ϕ, ψ)n
promf, (prom,hunt)n,¬huntc ⇒

Inapp
promf,¬huntc ⇒ ¬(prom,hunt)n

i.e. promf and ¬huntc are reasons for the inapplicability of (prom,hunt)n

Attacks all arguments using (prom,hunt)n as a reason!

2nb. an empty right-hand side expresses inconsistent reasons.
63 / 93

Part 5: The rules

Cons Reasoning with constraints:2

∆ ⇒ ϕo
Cons

∆,¬ϕc ⇒
promf, (prom,hunt)n ⇒ hunto

Cons
promf, (prom,hunt)n,¬huntc ⇒

i.e. promf and (prom,hunt)n (reasons for hunto) are inconsistent with ¬huntc.

Inapp If the reasons are inconsistent, at least one norm is inapplicable!

∆, (ϕ, ψ)n ⇒
Inapp

∆ ⇒ ¬(ϕ, ψ)n
promf, (prom,hunt)n,¬huntc ⇒

Inapp
promf,¬huntc ⇒ ¬(prom,hunt)n

i.e. promf and ¬huntc are reasons for the inapplicability of (prom,hunt)n

Attacks all arguments using (prom,hunt)n as a reason!

2nb. an empty right-hand side expresses inconsistent reasons.
64 / 93

Part 5: The rules

Cons Reasoning with constraints:2

∆ ⇒ ϕo
Cons

∆,¬ϕc ⇒
promf, (prom,hunt)n ⇒ hunto

Cons
promf, (prom,hunt)n,¬huntc ⇒

i.e. promf and (prom,hunt)n (reasons for hunto) are inconsistent with ¬huntc.

Inapp If the reasons are inconsistent, at least one norm is inapplicable!

∆, (ϕ, ψ)n ⇒
Inapp

∆ ⇒ ¬(ϕ, ψ)n
promf, (prom,hunt)n,¬huntc ⇒

Inapp
promf,¬huntc ⇒ ¬(prom,hunt)n

i.e. promf and ¬huntc are reasons for the inapplicability of (prom,hunt)n

Attacks all arguments using (prom,hunt)n as a reason!

2nb. an empty right-hand side expresses inconsistent reasons.
65 / 93

Part 5: Challenges

Let’s illustrate the use of DAC!

Deontic logic is driven by paradoxes and challenging scenarios.

Central challenge: contrary-to-duty reasoning (Chellas. 1963).

▶ Scenarios where an agent is bound by an initial duty, fails to comply, and a violation ensues.
▶ Task: agent must find out what to do given her violation.

Defeasible reasoning can adequately address CTD reasoning (whereas traditional deontic logics
cannot).

66 / 93

Part 5: CTD scenario

A
ROYAL DECREE: HUNTING DRAGONS IS FORBIDDEN. However, if such a hunt would nevertheless
take place, the hunter ought to ask the dragon for consent. Furthermore, to not frighten

any dragons, if no hunt takes place, no consent should be asked either.

The normative knowledge base K1:

N = {(⊤,¬hunt)n, (hunt,cons)n, (¬hunt,¬cons)n}
F = {⊤f} (no specific facts given)

C = {⊤c} (no specific constraints given, only consistency)

We are only interested in K1 arguments Γ ⇒ ∆, i.e., for which Γ ⊆ N ∪ F ∪ C.

67 / 93

Part 5: CTD scenario

A
ROYAL DECREE: HUNTING DRAGONS IS FORBIDDEN. However, if such a hunt would nevertheless
take place, the hunter ought to ask the dragon for consent. Furthermore, to not frighten

any dragons, if no hunt takes place, no consent should be asked either.

The normative knowledge base K1:

N = {(⊤,¬hunt)n, (hunt,cons)n, (¬hunt,¬cons)n}
F = {⊤f} (no specific facts given)

C = {⊤c} (no specific constraints given, only consistency)

We are only interested in K1 arguments Γ ⇒ ∆, i.e., for which Γ ⊆ N ∪ F ∪ C.

67 / 93

Part 5: CTD scenario

Given the compliant situation F = {⊤f}, we derive:

F-Detach
a : ⊤f, (⊤,¬hunt)n ⇒ ¬hunto

and

a

F-Detach
¬huntf, (¬hunt,¬cons)n ⇒ ¬conso

D-Detach
¬hunto, (¬hunt,¬cons)n ⇒ ¬conso

Cut
b : ⊤f, (⊤,¬hunt)n, (¬hunt,¬cons)n ⇒ ¬conso

Two obligations: don’t hunt of dragons (a) and don’t ask for consent (b).

K1 does not support application of (hunt,cons)n (since no hunt occurs).

68 / 93

Part 5: CTD scenario

K
EEPING THE PROMISE TO HER BROTHER IN MIND, princess Charlotte decides to initiate a hunt
for Albert. She remembers that she ought to be back on time for her brother’s birthday

though.

This a contrary-to-duty situation: A violation ensues.

The new knowledge base K2:

N = {(⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n, (hunt,back)n},
F = {⊤f,huntf},
C = {⊤c,huntc}.

The big question: What must Charlotte do given her violation?

69 / 93

Part 5: CTD scenario

K
EEPING THE PROMISE TO HER BROTHER IN MIND, princess Charlotte decides to initiate a hunt
for Albert. She remembers that she ought to be back on time for her brother’s birthday

though.

This a contrary-to-duty situation: A violation ensues.

The new knowledge base K2:

N = {(⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n, (hunt,back)n},
F = {⊤f,huntf},
C = {⊤c,huntc}.

The big question: What must Charlotte do given her violation?

69 / 93

Part 5: CTD scenario

With K2 properly extending K1 we additionally derive:

c : huntf, (hunt,cons)n ⇒ conso and d : huntf, (hunt,back)n ⇒ backo

We also have:

Ax⊤c ⇒ ¬⊥c

b
c Axconso,¬conso ⇒ ⊥o

Cut
¬conso,huntf, (hunt,cons)n ⇒ ⊥o

Cut
x : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n ⇒ ⊥o

Cons
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,¬⊥c ⇒

Cut
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒

Inapp 3X
e : ⊤f,huntf, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒ ¬(⊤,¬hunt)n

and
f : ⊤f,huntf, (⊤,¬hunt)n, (hunt,cons)n,⊤c ⇒ ¬(¬hunt,¬cons)n

and
g : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n,⊤c ⇒ ¬(hunt,cons)n

The conflict between e, f, and g is due to general consistency ⊤c.

70 / 93

Part 5: CTD scenario

With K2 properly extending K1 we additionally derive:

c : huntf, (hunt,cons)n ⇒ conso and d : huntf, (hunt,back)n ⇒ backo

We also have:

Ax⊤c ⇒ ¬⊥c

b
c Axconso,¬conso ⇒ ⊥o

Cut
¬conso,huntf, (hunt,cons)n ⇒ ⊥o

Cut
x : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n ⇒ ⊥o

Cons
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,¬⊥c ⇒

Cut
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒

Inapp 3X
e : ⊤f,huntf, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒ ¬(⊤,¬hunt)n

and
f : ⊤f,huntf, (⊤,¬hunt)n, (hunt,cons)n,⊤c ⇒ ¬(¬hunt,¬cons)n

and
g : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n,⊤c ⇒ ¬(hunt,cons)n

The conflict between e, f, and g is due to general consistency ⊤c.

71 / 93

Part 5: CTD scenario

With K2 properly extending K1 we additionally derive:

c : huntf, (hunt,cons)n ⇒ conso and d : huntf, (hunt,back)n ⇒ backo

We also have:

Ax⊤c ⇒ ¬⊥c

b
c Axconso,¬conso ⇒ ⊥o

Cut
¬conso,huntf, (hunt,cons)n ⇒ ⊥o

Cut
x : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n ⇒ ⊥o

Cons
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,¬⊥c ⇒

Cut
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒

Inapp 3X
e : ⊤f,huntf, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒ ¬(⊤,¬hunt)n

and
f : ⊤f,huntf, (⊤,¬hunt)n, (hunt,cons)n,⊤c ⇒ ¬(¬hunt,¬cons)n

and
g : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n,⊤c ⇒ ¬(hunt,cons)n

The conflict between e, f, and g is due to general consistency ⊤c.

72 / 93

Part 5: CTD scenario

With K2 properly extending K1 we additionally derive:

c : huntf, (hunt,cons)n ⇒ conso and d : huntf, (hunt,back)n ⇒ backo

We also have:

Ax⊤c ⇒ ¬⊥c

b
c Axconso,¬conso ⇒ ⊥o

Cut
¬conso,huntf, (hunt,cons)n ⇒ ⊥o

Cut
x : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n ⇒ ⊥o

Cons
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,¬⊥c ⇒

Cut
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒

Inapp 3X
e : ⊤f,huntf, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒ ¬(⊤,¬hunt)n

and
f : ⊤f,huntf, (⊤,¬hunt)n, (hunt,cons)n,⊤c ⇒ ¬(¬hunt,¬cons)n

and
g : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n,⊤c ⇒ ¬(hunt,cons)n

The conflict between e, f, and g is due to general consistency ⊤c.

73 / 93

Part 5: CTD scenario

With K2 properly extending K1 we additionally derive:

c : huntf, (hunt,cons)n ⇒ conso and d : huntf, (hunt,back)n ⇒ backo

We also have:

Ax⊤c ⇒ ¬⊥c

b
c Axconso,¬conso ⇒ ⊥o

Cut
¬conso,huntf, (hunt,cons)n ⇒ ⊥o

Cut
x : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n ⇒ ⊥o

Cons
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,¬⊥c ⇒

Cut
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒

Inapp 3X
e : ⊤f,huntf, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒ ¬(⊤,¬hunt)n

and
f : ⊤f,huntf, (⊤,¬hunt)n, (hunt,cons)n,⊤c ⇒ ¬(¬hunt,¬cons)n

and
g : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n,⊤c ⇒ ¬(hunt,cons)n

The conflict between e, f, and g is due to general consistency ⊤c.

74 / 93

Part 5: CTD scenario

With K2 properly extending K1 we additionally derive:

c : huntf, (hunt,cons)n ⇒ conso and d : huntf, (hunt,back)n ⇒ backo

We also have:

Ax⊤c ⇒ ¬⊥c

b
c Axconso,¬conso ⇒ ⊥o

Cut
¬conso,huntf, (hunt,cons)n ⇒ ⊥o

Cut
x : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n ⇒ ⊥o

Cons
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,¬⊥c ⇒

Cut
⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒

Inapp 3X
e : ⊤f,huntf, (¬hunt,¬cons)n, (hunt,cons)n,⊤c ⇒ ¬(⊤,¬hunt)n

and
f : ⊤f,huntf, (⊤,¬hunt)n, (hunt,cons)n,⊤c ⇒ ¬(¬hunt,¬cons)n

and
g : ⊤f,huntf, (⊤,¬hunt)n, (¬hunt,¬cons)n,⊤c ⇒ ¬(hunt,cons)n

The conflict between e, f, and g is due to general consistency ⊤c.

75 / 93

Part 5: CTD scenario

We can use the constraint huntc in K2 to derive:

Axhuntc ⇒ ¬¬huntc
a Cons

⊤f, (⊤,¬hunt)n,¬¬huntc ⇒
Cut

⊤f, (⊤,¬hunt)n,huntc ⇒
Inapp

h : ⊤f,huntc ⇒ ¬(⊤,¬hunt)n

Hence: the norm (⊤,¬hunt)n becomes inapplicable given the violation!

What to do with all these arguments? Formal argumentation!
▶ DAC-induced argumentation frameworks model conflicts!

76 / 93

Part 5: CTD scenario

We can use the constraint huntc in K2 to derive:

Axhuntc ⇒ ¬¬huntc
a Cons

⊤f, (⊤,¬hunt)n,¬¬huntc ⇒
Cut

⊤f, (⊤,¬hunt)n,huntc ⇒
Inapp

h : ⊤f,huntc ⇒ ¬(⊤,¬hunt)n

Hence: the norm (⊤,¬hunt)n becomes inapplicable given the violation!

What to do with all these arguments? Formal argumentation!
▶ DAC-induced argumentation frameworks model conflicts!

77 / 93

Part 5: DAC and AFs

Definition

A DAC-induced Argumentation Framework:

LetK = ⟨F ,N , C⟩ be a normative knowledge base. A DAC-induced argumentation framework
is a tuple AF(K) = ⟨Arg, Att⟩ such that:

▶ Γ ⇒ ∆ ∈ Arg iff Γ ⇒ ∆ is DAC-derivable and Γ ⊆ F ∪N ∪ C.

And for each a, b ∈ Arg:

▶ a attacks b, i.e., (a, b) ∈ Att iff a = Γ ⇒ ¬(ϕ, ψ) and b = ∆, (ϕ, ψ) ⇒ Γ.

78 / 93

Part 5: DAC and AFs

c : huntf, (hunt,cons)n ⇒ conso

h : ⊤f,huntc ⇒ ¬(⊤,¬hunt)n

a : ⊤f, (⊤,¬hunt)n ⇒ ¬hunto

b
[

⊤f, (⊤,¬hunt)n,
(¬hunt,¬cons)n

]
⇒ ¬conso

g :

[
⊤f,huntf, (⊤,¬hunt)n,
(¬hunt,¬cons)n,⊤c,

]
⇒ ¬(hunt,cons)n

f :
[

⊤f,huntf, (⊤,¬hunt)n,
(hunt,cons)n,⊤c

]
⇒ ¬(¬hunt,¬cons)n

e :

[
⊤f,huntf, (hunt,cons)n,

(¬hunt,¬cons)n,⊤c

]
⇒ ¬(⊤,¬hunt)n

d : huntf, (hunt,back)n ⇒ backo

(Note that argument x concluding ⊥o is omitted since it is attacked by all attackers)

Let’s draw some conclusions!
79 / 93

Part 5: DAC and AFs

Recall:

Definition
Stable:
E is stable iff it is conflict-free and for all b ∈ Arg\E there is a c ∈ E such that (c, b) ∈ Attack.

Definition

nm inference relations:
skeptical: K |∼stable

∩con ϕ iff in every stable-extension E of AF(K) there is an argument a
with conclusion ϕ.

credulous: K |∼stable
∪ ϕ iff there is a stable-extension E of AF(K) containing an

argument a with conclusion ϕ.

80 / 93

Part 5: DAC and AFs

Recall:

Definition
Stable:
E is stable iff it is conflict-free and for all b ∈ Arg\E there is a c ∈ E such that (c, b) ∈ Attack.

Definition

nm inference relations:
skeptical: K |∼stable

∩con ϕ iff in every stable-extension E of AF(K) there is an argument a
with conclusion ϕ.

credulous: K |∼stable
∪ ϕ iff there is a stable-extension E of AF(K) containing an

argument a with conclusion ϕ.

81 / 93

Part 5: DAC and AFs

c : huntf, (hunt,cons)n ⇒ conso

h : ⊤f,huntc ⇒ ¬(⊤,¬hunt)n

a : ⊤f, (⊤,¬hunt)n ⇒ ¬hunto

b
[

⊤f, (⊤,¬hunt)n,
(¬hunt,¬cons)n

]
⇒ ¬conso

g :

[
⊤f,huntf, (⊤,¬hunt)n,
(¬hunt,¬cons)n,⊤c,

]
⇒ ¬(hunt,cons)n

f :
[

⊤f,huntf, (⊤,¬hunt)n,
(hunt,cons)n,⊤c

]
⇒ ¬(¬hunt,¬cons)n

e :

[
⊤f,huntf, (hunt,cons)n,

(¬hunt,¬cons)n,⊤c

]
⇒ ¬(⊤,¬hunt)n

d : huntf, (hunt,back)n ⇒ backo

82 / 93

Part 5: DAC and AFs

c : huntf, (hunt,cons)n ⇒ conso

h : ⊤f,huntc ⇒ ¬(⊤,¬hunt)n

a : ⊤f, (⊤,¬hunt)n ⇒ ¬hunto

b
[

⊤f, (⊤,¬hunt)n,
(¬hunt,¬cons)n

]
⇒ ¬conso

g :

[
⊤f,huntf, (⊤,¬hunt)n,
(¬hunt,¬cons)n,⊤c,

]
⇒ ¬(hunt,cons)n

f :
[

⊤f,huntf, (⊤,¬hunt)n,
(hunt,cons)n,⊤c

]
⇒ ¬(¬hunt,¬cons)n

e :

[
⊤f,huntf, (hunt,cons)n,

(¬hunt,¬cons)n,⊤c

]
⇒ ¬(⊤,¬hunt)n

d : huntf, (hunt,back)n ⇒ backo

CTD Duties given K2 (with F = {⊤f,huntf}): Stable extension = {c,d,h, e}
83 / 93

Part 5: DAC and AFs

c : huntf, (hunt,cons)n ⇒ conso

h : ⊤f,huntc ⇒ ¬(⊤,¬hunt)n

a : ⊤f, (⊤,¬hunt)n ⇒ ¬hunto

b
[

⊤f, (⊤,¬hunt)n,
(¬hunt,¬cons)n

]
⇒ ¬conso

g :

[
⊤f,huntf, (⊤,¬hunt)n,
(¬hunt,¬cons)n,⊤c,

]
⇒ ¬(hunt,cons)n

f :
[

⊤f,huntf, (⊤,¬hunt)n,
(hunt,cons)n,⊤c

]
⇒ ¬(¬hunt,¬cons)n

e :

[
⊤f,huntf, (hunt,cons)n,

(¬hunt,¬cons)n,⊤c

]
⇒ ¬(⊤,¬hunt)n

d : huntf, (hunt,back)n ⇒ backo

CTD Duties given K2: K2 |∼stable
∩ conso, K2 |∼stable

∩ backo, and K2 |̸∼stable
∩ ¬hunto

84 / 93

Part 5: DAC and AFs

CTD Duties (K2) with F = {⊤f,huntf} skeptical inference:

K2 |∼stable
∩ conso, K2 |∼stable

∩ backo, and K2 |̸∼stable
∩ ¬hunto

Note: the initial compliant situation K1 yields an AF with different obligations!

a : ⊤f, (⊤,¬hunt)n ⇒ ¬hunto b
[

⊤f, (⊤,¬hunt)n,
(¬hunt,¬cons)n

]
⇒ ¬conso

Initial/Compliant duties (K1) with F = {⊤f}:

K1 |∼stable
∩ ¬hunto, K1 |∼stable

∩ ¬conso

Hence, extending K1 to K2 means withdrawing obligations!
85 / 93

Part 5: DAC results

The Input/Output (I/O) family (Makinson and van der Torre, 2000; 2001):

▶ Defeasible knowledge representation formalism for normative, causal, doxastic, legal
reasoning,...

Theorem 1

Soundness and completeness result (van Berkel and Straßer, 2022):
DAC-instantiated AF(K)s are sound and complete with respect to its corresponding non-
monotonic I/O logic:

▶ K |∼stable
∪/∩ ϕo iff ϕ is credulously/skeptical entailed in I/O logic.

This holds for 16 DAC and I/O systems.

86 / 93

Part 5: DAC results

The theorem contributes to the claim that formal argumentation is a uniform formalism for NML.

Such results are promising!

▶ We can use argumentation tools for this KRR framework!
▶ We can compare various NMLs in a shared setting.
▶ We can develop explainability methods for normative reasoning.

Similar results were obtained for Default Logic!

87 / 93

Part 5: DAC results

The theorem contributes to the claim that formal argumentation is a uniform formalism for NML.

Such results are promising!

▶ We can use argumentation tools for this KRR framework!
▶ We can compare various NMLs in a shared setting.
▶ We can develop explainability methods for normative reasoning.

Similar results were obtained for Default Logic!

88 / 93

Part 6: Let’s round up

Closing up

Key messages:

1 Defeasibility is ubiquitous: retracting conclusions.

2 Formal argumentation as a KR approach to defeasible reasoning: argument attack and
selection.

3 Proof systems as a rule-based approach to generating arguments and refining different
argument attacks.

4 Logical argumentation can satisfy various metatheoretic properties and rationality postulates
are not guaranteed to hold (e.g., consistency!).

5 Application: logical argumentation provides more transparent reasoning with normative
knowledge bases.

90 / 93

Closing up

Open problems and challenges:

1 NML with richer languages: preferences, FO, Modalities,....

2 Formal argumentation: Bridging the gap between symbolic and non-symbolic AI.

3 Automated reasoning: heuristics to work with finite AFs even when infinitely many arguments
are available, etc.

4 Dialogues: construction of (deontic) explanation between humans and systems via
argumentative exchange: many fields of research involved (NLP, ML, AF, philosophy).

5 . . .

91 / 93

Closing up

Open problems and challenges:

1 NML with richer languages: preferences, FO, Modalities,....

2 Formal argumentation: Bridging the gap between symbolic and non-symbolic AI.

3 Automated reasoning: heuristics to work with finite AFs even when infinitely many arguments
are available, etc.

4 Dialogues: construction of (deontic) explanation between humans and systems via
argumentative exchange: many fields of research involved (NLP, ML, AF, philosophy).

5 . . .

92 / 93

Some references

Parts 1 and 5:

▶ van Berkel, Kees and Christian Straßer (2022). “Reasoning With and About Norms in Logical Argumentation”. In:
Computational Models of Argument, proceedings (COMMA22).

▶ Chisholm, Roderick M. (1963). “Contrary-to-duty imperatives and deontic logic”. In: Analysis 24.2, pp. 33–36.
▶ Gentzen, G.: Untersuchungen über das logische Schließen I, II. Mathematische Zeitschrift 39, 176–210, 405–431 (1934)
▶ Hart, H.L.: The ascription of responsibility and rights. In: Proceedings of the Aristotelian society. vol. 49, pp. 171–194.

JSTOR (1948)
▶ Kraus, S., Lehman, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics 44, 167–207 (1990)
▶ Lehmann, D.J., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55(1), 1–60 (1992)
▶ Makinson, David and Leendert van der Torre (2001). “Constraints for Input/Output Logics”. In: Journal of Philosophical

Logic 30.2, pp. 155–185.
▶ Mercier, Hugo and Dan Sperber (2011). “Why do humans reason? Arguments for an argumentative theory”. In: Behavioral

and brain sciences 34.2, pp. 57–74.
▶ Reiter, R.: A logic for default reasoning 1–2(13) (1980)
▶ Ross, W.D.: The right and the good. Oxford University Press (1930)
▶ Toulmin, Stephen E. (1958). The Uses of Argument. Cambridge University Press

93 / 93

